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ABSTRACT 

Floods are a significant threat to communities around the world and require substantial 

resources and infrastructure to predict. Limited local resources in developing nations make it 

difficult to build and maintain dense sensor networks like those present in the United States, 

creating a large disparity in flood prediction across borders. To address this disparity, I operated 

the Iowa Flood Center Top Layer model to predict floods in Puerto Rico without relying on in-

situ data measurements. Instead, all model forcing was provided by satellite remote sensing 

datasets that offer near-global coverage.  

I used three datasets gathered via satellite remote sensing to build and operate watershed 

streamflow models: elevation data obtained by the Space Shuttle Endeavour through the Shuttle 

Radar Topography Mission (SRTM), rainfall estimates gathered by a constellation of satellites 

through the Global Precipitation Measurement Mission (GPM), and evapotranspiration rate 

estimates collected by Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard 

the Aqua and Terra satellites. While these satellite remote sensing datasets make observations of 

nearly the entire world, their spatiotemporal resolution is coarse compared to conventional on-

the-ground measurements.  

Hydrologic models were assembled for 75 basins upstream of streamflow gages 

monitored by the United States Geologic Survey (USGS). Model simulations were compared to 

real-time measurements at these gages. Continuous simulations spanning 58 months achieve 

poor Nash Sutcliffe Efficiency and Klinge Gupta Efficiency of -112.0 and -0.5, respectively. The 

sources of error that influence model performance were investigated, underlining some 

limitations of relying solely on satellite data for operational flood prediction efforts.   
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PUBLIC ABSTRACT 

Floods are a significant threat to communities around the world and require substantial 

resources and infrastructure to predict. Limited local resources in developing nations make it 

difficult to build and maintain dense on-the-ground sensor networks like those present in the 

United States, creating a large disparity in flood prediction across borders. To address this 

disparity and help predict floods in Puerto Rico, I have built a series of hydrologic models that 

rely on free and readily available data gathered by satellites. Hydrologic models are capable of 

simulating streamflow at locations ungauged by stream sensors. Flood-related satellite data is 

available from the National Aeronautics and Space Administration (NASA) Global Precipitation 

Measurement (GPM) Mission and Shuttle Radar Topography Mission (SRTM), among others. 

Operating hydrologic models with only globally available satellite data from these sources is a 

strategy available to predict floods for nearly any resource-constrained community, but its 

accuracy is not fully understood. 

The objective of this research is to test the capabilities of hydrologic models to provide 

accurate streamflow predictions across the main island of Puerto Rico. Models were assembled 

for 75 basins upstream of on-the-ground streamflow gages monitored by the United States 

Geologic Survey (USGS). Flood model outputs were compared to real-time measurements at 

these 75 locations, showing limited accuracy. The sources of error that influence the accuracy of 

the models were investigated, underlining some limitations of relying solely on satellite remote 

sensing data for operational flood prediction efforts.   
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CHAPTER 1: INTRODUCTION 

 In the past 50 years, 90% of all recorded natural disasters were flood related. Moreover, 

natural disasters like floods are occurring nearly five times as often as they were in the 1970s, 

with both developed and developing countries bearing the burden of repeated floods (World 

Meteorological Organization, 2014). To become resilient, communities must be able to prepare 

themselves by predicting floods locally. However, traditional flood prediction strategies rely on 

measurement of on-the-ground data, requiring substantial financial resources, expertise, and 

infrastructure. Such information is simply not available to all vulnerable communities. Instead, 

flood conditions can be simulated where measurement is not feasible by taking advantage of 

remotely sensed data. Many satellites orbit Earth to measure flood-related data here and now. 

Their observations cover the globe and cost individual communities nothing. This research was 

then motivated by one question: Can we predict floods from space? 

1.1 Motivation 

 Satellite measurements of rainfall, evapotranspiration, and terrain topography are 

powerful because they are freely available and offer global coverage. As such, they benefit both 

communities rich and poor. This research attempts to address the disparity between well-

informed, flood-resilient communities like many across Iowa and communities that are left 

victim to flood-related natural disasters.  

 The Iowa Flood Center (IFC) was established at the University of Iowa in 2009 after the 

devastating floods of 2008 highlighted a critical lack of publically-available flood information 

(Krajewski et al., 2017). The IFC was charged by the Iowa legislature to improve the availability 

of flood-relevant information to Iowans. The IFC’s projects include the deployment of over 250 
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bridge-mounted stream-stage sensors and the creation of a community flood inundation map 

library. Most notably, the IFC developed an operational statewide, real-time flood forecasting 

system that forces evapotranspiration and radar rainfall inputs into a rainfall-runoff distributed 

model with streamflow routing.  

While stream sensors monitor the current behavior of rivers where they are installed, 

hydrologic models serve an important role in flood prediction. Hydrologic models are capable of 

estimating river flows at ungauged locations throughout the river network. Hydrologic models 

represent the basin-scale water balance with a series of equations that partition rainfall and 

upstream flow between storage in the soil, evapotranspiration, and downstream flow. If rainfall, 

evapotranspiration, and soil composition can be accurately represented, streamflow is simply 

estimated by balancing storage and flux rates (Ajami, Gupta, Wagener, & Sorooshian, 2004). 

The IFC model provides streamflow predictions for over 2,000 points on the river network 

across Iowa including 1,000 communities (Krajewski et al., 2017). A priority of the IFC staff is 

to provide flood-relevant information to the public, emergency management, and state and local 

authorities through an interactive online portal called Iowa Flood Information System (IFIS) 

(Demir & Krajewski, 2013). 

However, there are no such information resources for communities in Nicaragua, a 

developing country in Central America that suffered over 3,800 fatalities from Hurricane Mitch 

in 1998, a storm that never entered its borders; in  Bangladesh, a developing country in South 

Asia whose citizens account for 2.2% of the world population and over 16.5% of the world 

population exposed to flood risk according to the World Resources Institute (WRI) Aqueduct 

Global Flood Analyzer; in Myanmar, a developing country in Southeast Asia that lost over 

138,000 lives in the Ayeyarwady delta in 2008 from storm surge and intense rain cause by 
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tropical storm Nargis; and in Afghanistan, a developing nation in the Middle East that had no 

flood hazard maps or federal data records on the occurrence and impact of floods until after 2010 

(Basha & Rus, 2008; Brakenridge et al., 2017; Hagen & Teufer, 2009; Ivette Gómez, Munk 

Ravnborg, & Rivas Hermann, 2007; Thwin, Chan, Fritz, Thu, & Blount, 2011; United Nations 

Department of Economic and Social Affairs, 2018; Ward et al., 2013; Winsemius, Van Beek, 

Jongman, Ward, & Bouwman, 2013). Developing countries across the world simply lack the 

resources to invest in the necessary tools to effectively predict floods at a local level. If efforts by 

the Iowa Flood Center represent the cutting edge, chronic vulnerability to floods in resource-

constrained communities is the status quo.  

1.2 Objective 

 The objective of this research is to evaluate the performance of a regional hydrologic 

model driven exclusively by satellite remote sensing data. Developing communities may not be 

monitored by meteorological and soil sensors if they lack stream sensors so direct measurement 

of inputs for hydrologic models can be unfeasible. By operating a hydrologic model using only 

satellite data, this research tests the capability of flood models in the most difficult scenario 

where no in-situ measurements of a watershed’s physical characteristics, meteorology, or state 

are available. Understanding the performance of this approach may establish a baseline for flood 

prediction in the most data scarce areas of the world.  

1.3 Approach 

 The current standard hydrologic model used by the Iowa Flood Center was operated in 75 

gauged watersheds on the main island of Puerto Rico to continuously simulate streamflow. 

Puerto Rico is an appropriate study area for this research because it shares both socioeconomic 
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and hydro-meteorological characteristics of nearby developing countries in the western 

hemisphere tropical region. Moreover, due to its commonwealth status, Puerto Rico is actively 

monitored by the United States Geological Survey (USGS), National Weather Service (NWS), 

United States Army Corps of Engineers (USACE), the National Oceanic and Atmospheric 

Administration (NOAA) and commonwealth agencies, allowing for evaluation of model 

performance and satellite data accuracy by comparison to on-the-ground measurements. To build 

and force these models, I have used three datasets gathered via satellite remote sensing to build 

and operate watershed streamflow models: elevation data obtained by the Space Shuttle 

Endeavour through the Shuttle Radar Topography Mission (SRTM), rainfall estimates gathered 

by a constellation of satellites through the Global Precipitation Measurement Mission (GPM), 

and evapotranspiration rate estimates collected by Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensors aboard the Aqua and Terra satellites. Each model was built 

and organized using SRTM data, while GPM and MODIS data provided all model forcing.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction  

Many modelling efforts have indirectly used satellite observations to perform validation, 

calibration, parameter estimation, and risk assessment (Di Baldassarre, Schumann, & Bates, 

2009; García-Pintado, Neal, Mason, Dance, & Bates, 2013; Scanlon et al., 2006; Schumann & Di 

Baldassarre, 2010; Schumann et al., 2007; Skakun, Kussul, Shelestov, & Kussul, 2014; Stephens, 

Bates, Freer, & Mason, 2012; Tramblay et al., 2012; Yan, Di Baldassarre, Solomatine, & 

Schumann, 2015). Still, direct use of satellite remote sensing data to directly drive the lumped 

and distributed hydrologic models described in Chapter 2.2 has not yet been fully explored. As 

discussed in Chapter 2.3, satellite estimation of precipitation and rainfall has advanced rapidly, 

offering benefits that may not supersede that of existing sensor networks in developed areas. 

Regions in the developing world will likely benefit most from flood-related satellite remote 

sensing data, as they are also most vulnerable to floods. Perhaps the most relevant application of 

satellite remote sensing data for flood prediction in such communities is the Flash Flood 

Guidance System (FFGS) developed by the World Meteorological Organization (WMO) and 

Hydrologic Research Center (HRC), as discussed in Chapter 2.4. 

2.2 Hydrologic Modelling 

The development of hydrologic models began 5 decades ago and has been greatly 

advanced by high performance computing, remote sensing techniques, and geographic 

information systems (GIS). Lumped models were initially applied during the first phase of 

hydrologic model development, due to computational limits. Spatial variability of the landscape 

characteristics, hydro-meteorological forcings, or antecedent conditions were not accounted for 
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by these models. To overcome such challenges, effective parameters were heavily calibrated to 

match simulations to observed streamflow behavior based on the hydrographs at watershed 

outlets. Parameter calibration can allow for correct overall mass balance but may falter in 

accurately representing physical processes throughout the catchment. Perhaps calibration is 

wholly justifiable when data is sparse and the ultimate use is for operational predictions of 

streamflow. However, with the advancement of GIS technology and remote sensing techniques, 

an abundance of near-global data has been made available to describe a watershed’s physical 

characteristics (e.g. topography, land cover, soil properties), hydro-meteorological fluxes (e.g. 

precipitation and evapotranspiration), and state (e.g. soil moisture). As such, modern lumped 

models are physically-based, representing the processes that occur in the watershed via control 

volumes that influence the catchment’s hydrologic cycle. Lumped models are capable of 

accurate hydrologic simulation across a variety of scales. Notably, lumped models are utilized by 

the Iowa Flood Center and National Weather Service River Forecast Centers.   

Distributed hydrologic models are capable of accounting for spatial heterogeneity, but 

require a set of parameters for each and every control volume. An enormous amount of 

observations describing each hydrologic function would be required to accurately calibrate these 

parameters for an entire region (Sawicz, Wagener, Sivapalan, Troch, & Carrillo, 2011). Lacking 

accurate measurement of hydrologic function across the watershed of interest, some distributed 

models are calibrated using only the outlet hydrograph. The many degrees of freedom for each 

set of parameters can affect the same outcome in similar ways. Thusly, it is possible to get lost in 

a fog of calibration, wondering if the distributed model results are right for the wrong reasons 

when multiple errors effectively compensate for each other (Ebel & Loague, 2006).  
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Perhaps the unique challenges presented by both lumped and distributed hydrologic 

would be overcome if calibration methods could be improved to the extent that a singular 

optimal solution is achieved for each area and time of interest. Still, optimal parameter 

calibration to reach this optimal solution is only possible for a perfectly organized model that is 

build using error-free measurements of watershed characteristics. Even so, parameter calibration 

using historical data relies on an assumption of stationarity, which is ill-fitting in a world 

affected by climate change, urbanization, and land cover modification (Falkenmark et al., 2008). 

I avoided model calibration by choosing parameters that describe hydrologic characteristics and 

processes at the hillslope scales. Each parameter was based on measurable physical properties 

that could be reasonably obtained for watersheds across the world.  

2.3 Satellite Remote Sensing of Land Surface Hydrology 

The study of land surface hydrology using remote sensing techniques has advanced 

greatly since the launch of the U.S. National Aeronautics and Space Administration (NASA) 

Earth Observing System (EOS). Precipitation is the primary driver of the land hydrological 

cycle, and great advances have been made to accurately estimate precipitation using visible, 

infrared, and microwave technology aboard satellites (Tang, Gao, Lu, & Lettenmaier, 2009). 

Visible and infrared sensors were the first technologies used to estimate rainfall from satellites 

(Petty & Krajewski, 2010). Visible and infrared sensors do not directly measure precipitation due 

to the presence of clouds. Instead, precipitation is inferred from cloud top brightness 

temperature. However, microwave signals directly interact with precipitation particles and are 

much less sensitive to cloud cover. Early satellite retrievals of precipitation over land were 

gathered by the Special Sensory Microwave Imager (SSM/I) aboard the Defense Meteorological 
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Satellite Program (DMSP) platforms, TRMM Microwave Imager (TMI) aboard the Tropical 

Rainfall Measuring Mission (TRMM) satellite, and Advanced Microwave Scanning Radiometer-

EOS (ASMR-E) aboard the EOS Aqua Satellite (Dinku & Anagnostou, 2005; Grecu, Olson, & 

Anagnostou, 2004; Kummerow et al., 2001; Prabhakara, Iacovazzi, & Yoo, 2004; Spencer, 

Goodman, & Hood, 1988; G. L. Stephens & Kummerow, 2007). New active microwave sensors 

(radar) provide direct estimates of the vertical distribution of precipitation. TRMM offered the 

first spaced-based precipitation radar estimates and its successor, the Global Precipitation 

Measurement (GPM) mission provides near-global coverage. Though visible, infrared, and 

microwave sensors have their own limitations, algorithms that utilize their intercalibration can 

generate rainfall estimates at high spatiotemporal resolution. Algorithms like Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) 

and Integrated Multi-Satellite Retrievals for GPM (IMERG) that use intermittent coverage of 

rain rates provided by constellations of earth-orbiting satellites alongside retrievals from 

geosynchronous satellites represent the furthest advancement of satellite precipitation estimation 

(Huffman et al., 2009, 2018).  

After precipitation, evapotranspiration (ET) is the second largest component of the land 

surface water cycle. While remote sensing methods cannot measure ET directly, a number of 

advancements have been made to estimate ET using satellite observations of surface energy flux 

and vegetation. Early efforts to estimate ET relied on ground measurement of surface 

temperature and vegetation indices (Jackson, Reginato, & Idso, 1977). Satellite observations of 

global surface albedo, emissivity, reflectance, and land cover supplement this information to 

track the surface energy balance (Wan, Zhang, Zhang, & Li, 2004). Several algorithms have 

inferred latent heat flux from this balance to map ET regionally (Allen et al., 2005; Allen et al., 
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2007; Bastiaanssen et al., 1998). The latest advanced ET algorithms use the Penman-Monteith 

equation with remote sensing data as primary inputs, but must rely on some in-situ data that 

cannot be measured by satellites (Cleugh, Leuning, Mu, & Running, 2007; Mu, Zhao, & 

Running, 2013). A common sensor used by these algorithms is the Moderate Resolution Imaging 

Spectroradiometer (MODIS) launched aboard the NASA Terra and Aqua satellites in 1999 and 

2002, respectively.  

 Satellite remote sensing data will be most valuable to communities in data scarce regions. 

Consider that the NWS currently operates 159 of Next-Generation Radar (NEXRAD) systems. 

The network has been upgraded during its 27 years of operation to improve resolution and 

include dual polarization technology. Satellite estimates of rainfall provide little benefit to areas 

covered by the radar network. But, they can play a critical role in developing countries lacking 

dense, large-scale networks of weather radar or raingages. The utility of satellite remote sensing 

products providing flood data is magnified in developing countries because their communities 

are most vulnerable to flood-related natural disasters (Few, 2003; Schanze, Zeman, & Marsalek, 

2006).  

2.4 Flash Flood Guidance System 

 Recognizing that floods have a particularly disastrous impact on lives and properties of 

the affected populations, the 15th WMO Congress approved the implementation of a Flash Flood 

Guidance System project with global coverage. Is was developed by the WMO Commission for 

Hydrology (CHy) jointly with the WMO Commission for Basic Systems (CBS) and in 

collaboration with the US National Weather Service, the Hydrologic Research Center, and the 

United States Agency for International Development Office of U.S. Foreign Disaster Assistance 
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(USAID/OFDA). This system focuses on flash floods because they are among the world’s 

deadliest natural disasters, causing more than 5,000 lives to be lost annually. Flash floods have 

the highest mortality rate among different classes of flooding, causing the highest number of 

deaths per person affected (World Meteorological Organization, 2016). The Hydrologic 

Research Center has implemented regional Flash Flood Guidance Systems in the following 12 

regions in cooperation with the national meteorological and hydrological services within them: 

Black Sea and Middle East, Central Asia, Central America, Haiti and Dominican Republic, 

Mekong River, Myanmar, Northwest South America, South America, Southeast Asia, 

Southeastern Asia-Oceania, and South East Europe (World Meteorological Organization, 2016b, 

2016c, 2017a, 2017b, 2017c, 2018a, 2018b, 2018c, 2018d).  

Important technical elements of the Flash Flood Guidance System are the development 

and use of high-resolution numerical weather prediction model outputs, bias-corrected satellite 

precipitation estimate field, and physically-based hydrological modelling to determine flood risk 

on a catchment scale. The latter two elements of the FFGS are shared in common with the 

research approach presented here. In addition, small basins are delineated for each regional 

FFGS using global digital terrain elevation databases, relying on satellite topography 

measurements where land surveys and LiDAR information is unavailable.  

Notably, the real-time satellite precipitation estimates that drive the regional systems are 

specialized products provided by NOAA and the WMO. These products are shared with each 

regional FFGS in discrete time windows to provide the highest quality data available as soon as 

possible. As such, satellite precipitation estimates continue to improve for time t as additional 

satellite observations pass the area of interest later. Each regional FFGS is built to estimate 

rainfall first from passive microwave and infrared-based satellite observations. Unlike this 
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research, radar and gauge data is used both to bias-correct these satellite estimates on a seasonal 

basis and to provide supplementary observations of rainfall.  

The backbone of the FFGS models built and operated by the HRC is its threshold-runoff 

(Thresh-R) component (Ntelekos, Georgakakos, & Krajewski, 2006). Thresh-R is a computation 

of the amount of effective rainfall of a given duration that is capable of causing minor flooding, 

identified by causing bankfull conditions at the catchment outlet. Sacramento Soil Moisture 

Accounting Model (SACSMA) is used to forecast the generation of runoff that certain rainfall 

volumes would create over given durations. Thresh-R values are calculated at each basin and 

compared to SACSMA scenarios via rainfall-runoff curves produced for specific time interval 

and initial soil moisture conditions. Runoff values equal to Thresh-R for each scenario are 

termed flash flood guidance (FFG) values.  Therefore, evaluation of FFG informs national 

meteorological and hydrological services about flash flood risk by providing an estimate of the 

precipitation amount that would generate bankfull discharge at the outlets of small, flash flood 

prone basins throughout their country. Local experts integrate local knowledge to validate the 

guidance and issue a warning through channels appropriate to each country as necessary (World 

Meteorological Organization, 2016). 

Though the modelling approach of FFGS is very different from this research, it is 

motivated by the same challenge- predicting floods everywhere. The operation of FFGS to 

benefit global populations is impressive for its technical capabilities. Moreover, the WMO and 

HRC has demonstrated an outstanding ability to bridge the gap between scientific research and 

real-world application benefiting a diverse set of stakeholders. The FFGS serves as a proof that 

satellite remote sensing techniques can effectively be used to predict floods.  
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CHAPTER 3: PUERTO RICO 

3.1 Introduction 

The Estado Libre Asociado de Puerto Rico has commonwealth status within the United 

States federal system. Its per capita income of $18,626 in 2015 places it below the lowest 

category for US states and in the middle income group internationally. Both Puerto Rico’s rural 

and urban population are highly vulnerable to floods. But, the island is well gaged by hydro-

meteorological services, making it a suitable study area for this research (Azar & Rain, 2007).  

3.2 Hydro-meteorology of Puerto Rico  

Puerto Rico is the smallest island of the Greater Antilles, a grouping of islands that 

constitute 90% of the land mass of the mountainous islands that stretch from south of Florida to 

Venezuela. It is bounded by the Atlantic Ocean to the north and the Caribbean Sea to the south. 

The principal topographic feature of the island is the Cordillera Central, an east-west mountain 

range with peak elevations commonly ranging from 3,000 to 4,000 feet above sea level. The 

Cordillera Central divides the island into a northern two-thirds and a southern one-third, forming 

the principal drainage divide of the larger streams (López, Colón-Dieppa, & Cobb, 1979; López 

& Fields, 1970).  

Nearly 70 non-navigable rivers and streams originate in the Cordillera Central. These 

rivers are narrow, shallow, and generally less than 30 km long, making them susceptible to over-

bank floods and flash floods. Flash floods typically result from rainfall that is intense in the 

upper basins but is sparse or nonexistent on the coast (Ramos-Gines, 1999). Streams on the south 

coast are more susceptible to flash floods than those on the north coast because of their shorter 

length and steeper upper basin gradients. Average stream length and slope are 35 kilometers 
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(km) and 25 meters per kilometer (m/km), respectively, on the north side of the island and 23 km 

and 45 m/km on the south coast (Puerto Rico Department of Natural Resources, 1980).  

Figure 1 and Figure 2 illustrate the width function histogram and width function map of 

Puerto Rico rivers, respectively. All 51 watersheds defined by the National Hydrography Dataset 

Plus (NHD+) on the main island of Puerto Rico with outlets draining to the Atlantic Ocean and 

Caribbean Sea are included (Moore & Dewald, 2016). The width function is defined as the 

distribution of the distances from any point in a watershed to its outlet (Kirkby, 1976). Half of 

the streams on the main island of Puerto Rico are located 25 km or less from ocean outlets, 

demonstrating that streams often respond quickly to rainfall on the main island of Puerto Rico. 
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Figure 1: Histogram of width function distribution and average slope of links within each bin for 

all streams within watersheds defined by NHD+ (Moore & Dewald, 2016). 
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Puerto Rico has a tropical marine climate. Rain-producing weather systems generally 

move over the island from the east during June 1 to November 30 (hurricane season), and from 

the northwest during December to May. In the hurricane season, the dominating weather systems 

are tropical waves that develop in the trade-wind current, and upper-atmospheric troughs or 

cyclones in the tropical belt. During December to May, the weather-producing systems are 

frontal systems and low-pressure troughs (Ramos-Gines, 1999). Tropical cyclones play a central 

role in the hydrology of extreme floods in Puerto Rico and many of the record flood peak 

measurements in Puerto Rico were associated with tropical cyclones, most notably Hurricane 

Donna on 6 September, 1960; Hurricane Hortense on 10 September, 1996; Hurricane Georges on 

21- 22, September 1998; and Hurricane Maria on September 20, 2017.  The interior mountain 

region of Puerto Rico produces some of the largest unit discharge flood peaks in the United 

States. Orographic mechanisms play a major role in amplifying rainfall accumulations in these 

mountainous regions, relative to open ocean rainfall (Smith, Paula, & Baeck, 2005).  

Figure 2: Map of width function distribution for all streams within watersheds defined by 

NDH+ (Moore & Dewald, 2016). 
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3.3 Puerto Rico Study Area: Characteristics and Available Data 

To compare model simulations of streamflow across the main island of Puerto Rico to 

measured values, the systematic record and historic data for existing and continued gaging sites 

on the island were obtained from the USGS database. By 2019, the USGS reported data from 

108 active gaging sites operated and maintained by the Junta de Calidad Ambiental (JCA), 

Autoridad de Energía Eléctrica de Puerto Rico (AEEPR), Autoridad de Acueductos y 

Alcantarillado de Puerto Rico (AAAPR), and United States Army Corps of Engineers (USACE). 

However, many stream gages exclusively reported water elevation or monitored manmade canals 

in urban areas and were excluded from this study. Only those watersheds with time series of 

streamflow in natural channels recorded after March 2014 were included. Model simulations are 

driven by satellite remote sensing data that became available in March 2014.  

In total, 75 streamgage stations were included, and their corresponding upstream 

watersheds comprise the study area of this research. Figure 3 shows the location of each 

watershed and its outlet to the major rivers on the main island of Puerto Rico. All 75 watersheds 

were modelled, of which 44 had 25 years or more of daily streamflow record. Figure 4 shows a 

timeline of streamflow records at the 75 gaging sites for both daily and near real time data. Some 

of the 75 watersheds contain streamflow regulation structures like dams and reservoirs. Model 

performance within regulated watersheds was evaluated separately.  

Hydrologic and climatic basin characteristics were computed using GIS software. The 

characteristics were determined by digitizing historic maps or measuring digital coverages and 

overlays of terrain features, drainage basin properties, mean annual rainfall, 2-, 5-, 10-, 25-, 50-, 

and 100-year 24-hour rainfall intensity contours, and soil properties. The studied characteristics 

are listed below and a summary of all included hydrologic and climatic basin characteristics is 
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presented in Table 1 and Table 2, respectively. In addition, a statistical summary of these 

characteristics is presented in Table 3. 

TDA:  total drainage area measured up to the gaging site, in square kilometers: the total area of 

land whose runoff flows to the gaging site.  

DR: depth-to-rock, in meters: the basin average value of the maximum soil depth. Values 

were obtained from six regional United States Natural Resources Conservation Services 

(USNRCS) soil survey reports (Acevedo, 1982; Boccheciamp, 1977, 1978; Carter, 1965; 

Gierbolini, 1975, 1979).  

CS: channel slope, in percent: the average slope of channels within the basin.  

CL:  channel length, in kilometers: the distance along the stream from the gaging site to the 

drainage-basin divide along the longest channel. 

PF: peak flow with 10-year return period, in cubic meters per second: the flowrate at the 

watershed outlet with a probability of exceedance equaling 0.10.  Values were calculated 

using USGS Bulletin 17B (B17B) procedures within USGS PeakFQ software (Flynn, 

Kirby, & Hummel, 2006; U.S. Interagency Advisory Committee on Water Data, 1982).  

MAR: mean annual rainfall, in millimeters: the basin average total accumulated depth of annual. 

Values were interpolated from 30-year climate normals provided by the National Oceanic 

and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC) at 51 

weather stations located across the main island of Puerto Rico.  

RI-i: depth of rainfall accumulation during i-year 24-hour storm, in millimeters: the basin 

average rainfall depth of a storm lasting 24 hours for a return period of 1, 2, 5, 10, 25, 50, 

or 100 years. Values were calculated using NOAA Atlas 14 Volume 3 precipitation-

frequency estimates (Bonnin et al., 2006).  
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Figure 3: Locations of 75 modelled watersheds and the USGS streamgages at their outlets, numbered by Study 

Index as listed in Table 1. Streams provided by National Hydrography Dataset Plus (Moore & Dewald, 2016).   
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Table 1: Hydrologic characteristics of 75 modelled watersheds in Puerto Rico  

[Study Index, identifier of each gage, created for this study; USGS Streamgage, identifier for USGS each streamgage station located at 

basin outlet; Site Name, name describing USGS streamgage station; Type, identifier for data recorded by USGS streamgage station (R 

= rainfall, S = streamflow); Lat., decimal latitude of watershed outlet with NAD83 datum; Lon., decimal longitude of watershed outlet 

with NAD83 datum; Years of Record, number of full years of streamflow record; Period of Record, timeline of streamflow record 

availability; TDA, total drainage area; DR, depth-to-rock; CS, channel slope; CL, channel length; PF, 10-yr peak flow] 

Study 
Index  

USGS 
Streamgage 

Site Name Type Lat. Lon. 
Years of 
Record 

Period of 
Record 

TDA 
(km2) 

DR 
(m) 

CS 
(%) 

CL 
(km) 

PF 
(m3/s) 

1 50010500 Río Guajataca at Lares R, S 18.297 -66.873 1 2017-'19 8.2 1.35 4.1 3.0 N/A3 

4 50011200 Río Guajataca below Lago Guajataca S 18.398 -66.927 32 1986-'19 98.1 1.28 1.5 20.6 N/A1 

5 50014800 Río Camuy near Bayaney R, S 18.394 -66.818 29 1989-'19 83.1 1.34 2.4 23.0 179 

6 50021700 Río Grande de Arecibo above Utuado S 18.242 -66.722 20 1998-'19 93.2 1.36 5.0 19.1 N/A1,2 

8 50024950 Río Grande de Arecibo below Utuado S 18.300 -66.704 22 1996-'19 169.9 1.38 4.6 27.7 N/A1 

9 50025155 Río Saliente at Coabey near Jayuyu S 18.211 -66.563 30 1988-'19 24.0 1.15 8.8 7.2 245 

10 50026025 Río Caonillas at Paso Palma R, S 18.229 -66.637 23 1995-'19 98.4 1.21 5.4 22.5 560 

12 50027000 Río Limon above Lago Dos Bocas R, S 18.324 -66.621 19 1999-'19 86.0 1.24 4.4 17.3 533 

13 50028000 Río Tanama near Utuado R, S 18.299 -66.783 18 2000-'19 47.7 1.47 2.6 14.9 265 

14 50028400 Río Tanama at Charco Hondo S 18.412 -66.714 23 1995-'19 57.5 1.35 2.7 27.3 244 

15 50029000 Río Grande de Arecibo at Central Cambalache R, S 18.454 -66.702 22 1996-'19 518.0 1.31 3.9 59.5 N/A1 

16 50031200 Río Grande de Manatí near Morovis S 18.296 -66.414 30 1987-'17 143.2 1.30 4.9 32.5 769 

19 50034000 Río Gauta near Orocovis S 18.234 -66.454 29 1989-'19 43.3 1.11 8.5 14.3 285 

20 50035000 Río Grande de Manatí at Ciales R, S 18.322 -66.460 31 1987-'19 331.5 1.24 5.5 43.1 1583 

21 50038100 Río Grande de Manatí at Highway 2 near Manatí S 18.429 -66.526 29 1989-'19 510.2 1.22 2.7 12.3 2266 

23 50038320 Río Cibuco below Corozal S 18.354 -66.335 27 1989-'17 40.0 1.22 3.7 9.5 N/A1 

24 50039500 Río Cibuco at Vega Baja S 18.445 -66.374 29 1989-'19 256.7 1.16 2.1 36.4 532 

25 50039995 Río Carité at spillway R, S 18.075 -66.107 13 2005-'19 21.2 1.04 2.3 7.0 N/A1 

26 50043000 Río de la Plata at Proyecto La Plata R, S 18.158 -66.229 28 1986-'14 141.9 1.05 2.5 36.0 N/A1 

27 50043197 Río Usabón at Highway 162 near Barranquitas R, S 18.160 -66.309 11 2007-'19 22.2 1.06 1.5 7.0 205 

28 50043800 Río de la Plata at Comerio R, S 18.220 -66.224 27 1991-'19 281.0 1.07 3.4 48.2 2180 
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Table 1  ̶  Continued 

Study 
Index  

USGS 
Streamgage 

Site Name Type Lat. Lon. 
Years of 
Record 

Period of 
Record 

TDA 
(km2) 

DR 
(m) 

CS 
(%) 

CL 
(km) 

PF 
(m3/s) 

29 50044810 Río Guadiana near Guadiana S 18.299 -66.228 17 2001-'19 20.9 1.08 5.3 8.5 242 

30 50045010 Río de la Plata below La Plata damsite S 18.344 -66.238 28 1990-'19 447.6 1.08 3.7 70.6 N/A1 

31 50046000 Río de la Plata at Highway 2 near Toa Alta R, S 18.410 -66.261 33 1985-'19 538.7 1.00 3.4 81.5 1717 

32 50047535 Río de Bayamón at Arenas R, S 18.167 -66.122 18 2000-'19 7.0 1.07 1.2 3.7 N/A1 

34 50047560 Río de Bayamón below Lago de Cidra Dam S 18.201 -66.139 28 1990-'19 21.5 1.05 0.4 5.5 N/A1 

35 50047850 Río de Bayamón near Bayamón R, S 18.332 -66.139 29 1989-'19 108.3 1.06 2.3 25.9 N/A2 

36 50049100 Río Piedras at Hato Rey R, S 18.408 -66.069 24 1994-'19 39.4 1.09 1.1 11.7 262 

38 50050900 Río Grande de Loíza at Quebrada Arenas S 18.118 -65.988 29 1989-'19 15.5 1.12 2.5 5.1 384 

39 50051310 Río Cayaguas at Cerro Gordo R, S 18.152 -65.956 29 1989-'19 26.2 1.01 1.2 10.0 354 

40 50051800 Río Grande de Loíza at Highway 183 San Lorenzo S 18.184 -65.961 28 1990-'19 106.4 0.97 2.3 15.9 791 

41 50053025 Río Turabo above Borinquen S 18.160 -66.040 28 1990-'19 18.5 1.07 6.0 5.4 158 

42 50055000 Río Grande de Loíza at Caguas S 18.241 -66.009 33 1985-'19 232.6 0.94 2.6 27.4 1313 

43 50055225 Río Caguitas at Villa Blanca at Caguas R, S 18.247 -66.027 28 1990-'19 43.0 0.96 2.9 13.9 362 

44 50055380 Río Bairoa above Abiroa, Caguas S 18.256 -66.044 16 2002-'19 12.3 0.98 2.4 7.7 90 

45 50055750 Río Gurabo below El Mango S 18.232 -65.885 28 1990-'19 57.8 1.01 2.2 10.4 308 

46 50056400 Río Valenciano near Juncos R, S 18.214 -65.926 29 1989-'19 38.0 0.91 1.7 10.6 603 

47 50057000 Río Gurabo at Gurabo S 18.256 -65.968 33 1985-'19 155.9 0.93 1.6 21.2 1409 

48 50058350 Río Canas at Río Canas S 18.293 -66.045 28 1990-'19 19.5 1.00 0.7 3.8 137 

49 50059050 Río Grande de Loíza below Loíza damsite R, S 18.340 -66.006 22 1996-'19 541.3 1.03 1.9 43.3 N/A1 

50 50059210 Quebrada Grande at Barrio Dos Bocas S 18.348 -65.990 6 2012-'19 33.4 1.06 2.7 7.7 N/A3 

51 50061800 Río Canovanas near Campo Rico R, S 18.316 -65.889 25 1993-'19 25.5 1.21 4.9 9.5 379 

52 50063800 Río Espíritu Santo near Río Grande R, S 18.358 -65.814 24 1994-'19 22.3 1.38 8.7 9.7 402 

53 50064200 Río Grande near El Verde R, S 18.343 -65.842 28 1990-'19 18.9 1.36 11.2 7.9 372 

54 50065500 Río Mameyes near Sabana S 18.327 -65.750 27 1991-'19 17.8 1.17 8.9 5.5 458 

55 50067000 Río Sabana at Sabana S 18.329 -65.731 27 1991-'19 10.3 1.50 5.5 3.0 201 

56 50070900 Río Fajardo at Paraíso near Fajardo R, S 18.281 -65.701 15 2003-'19 24.5 1.22 2.5 8.8 N/A2 

57 50071000 Río Fajardo near Fajardo S 18.297 -65.693 29 1989-'19 38.6 1.20 2.1 11.1 409 
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Table 1  ̶  Continued 

Study 
Index  

USGS 
Streamgage 

Site Name Type Lat. Lon. 
Years of 
Record 

Period of 
Record 

TDA 
(km2) 

DR 
(m) 

CS 
(%) 

CL 
(km) 

PF 
(m3/s) 

58 50075000 Río Icacos near Naguabo R, S 18.275 -65.785 26 1992-'19 3.3 1.44 0.9 1.0 51 

60 50081000 Río Humacao at Las Piedras S 18.172 -65.869 29 1989-'19 17.2 0.89 2.3 12.6 352 

61 50083500 Río Guayanés near Yabucoa R, S 18.057 -65.901 16 2002-'19 44.5 0.80 3.4 13.8 193 

62 50085100 Río Guayanés at Central Roig S 18.064 -65.874 12 2006-'19 68.9 0.81 2.2 9.6 95 

63 50090500 Río Maunabo at Lizas R, S 18.025 -65.940 27 1991-'19 13.9 0.73 3.1 5.5 192 

64 50092000 Río Grande de Patillas near Patillas R, S 18.032 -66.032 29 1989-'19 47.4 0.88 8.0 11.6 407 

65 50093000 Río Marín near Patillas S 18.036 -66.009 18 2000-'19 11.5 0.88 6.6 2.4 107 

67 50093120 Río Grande de Patillas below Lago Patillas S 18.016 -66.024 13 2005-'19 66.5 0.87 7.3 14.5 N/A1 

70 50100200 Río Lapa near Rabo del Buey S 18.058 -66.241 19 1999-'19 25.7 1.04 6.8 6.3 N/A2 

71 50100450 Río Majada at la Plena S 18.043 -66.207 21 1997-'19 43.3 1.01 5.0 10.0 N/A1 

72 50106100 Río Coamo at Highway 14 at Coamo R, S 18.082 -66.354 31 1987-'19 112.7 1.08 3.6 17.2 430 

74 50110650 Río Jacaguas above Lago Guayabal S 18.115 -66.504 6 2012-'19 35.6 1.19 9.5 10.2 N/A3 

75 50110900 Río Toa Vaca above Lago Toa Vaca S 18.125 -66.457 28 1990-'19 36.8 1.16 7.9 12.6 190 

78 50111500 Río Jacaguas at Juana Díaz R, S 18.052 -66.511 28 1990-'19 129.0 1.19 6.0 28.4 N/A2 

79 50112500 Río Inabón at Real Abajo R, S 18.084 -66.563 29 1989-'19 25.1 1.22 10.6 10.1 107 

80 50113800 Río Cerrillos above Lago Cerrillos near Ponce R, S 18.115 -66.605 28 1990-'19 30.8 1.13 7.4 7.5 208 

82 50114000 Río Cerrillos below Lago Cerrillos near Ponce S 18.071 -66.581 27 1991-'19 46.1 1.05 5.3 14.8 N/A1 

83 50114900 Río Portugues near Tibes R, S 18.098 -66.642 21 1997-'19 18.8 1.13 6.2 7.8 83 

84 50115240 Río Portugues at Parque Ceremonial Tibes R, S 18.042 -66.621 5 2013-'19 31.1 1.09 6.4 16.4 N/A3 

85 50124200 Río Guayanilla near Guayanilla R, S 18.042 -66.798 29 1989-'19 49.0 1.20 5.3 15.0 279 

86 50126150 Río Yauco above Diversión Monserrate near Yauco R, S 18.047 -66.841 16 2002-'19 70.4 1.22 3.9 17.2 N/A1 

87 50129254 Río Loco at Las Latas near La Joya near Guanica S 18.007 -66.876 11 2007-'19 42.0 1.22 3.0 15.4 N/A2 

88 50136400 Río Rosario near Hormigueros R, S 18.158 -67.085 28 1990-'19 50.0 1.05 3.2 17.9 215 

89 50138000 Río Guanajibo near Hormigueros R, S 18.141 -67.148 30 1988-'19 310.8 0.90 1.9 39.4 716 

90 50144000 Río Grande de Añasco near San Sebastián R, S 18.282 -67.051 29 1989-'19 244.2 1.32 3.8 54.1 1306 

92 50147800 Río Culebrinas at Highway 404 near Moca R, S 18.360 -67.092 28 1990-'19 184.4 1.36 1.7 29.0 1021 

93 50148890 Río Culebrinas at Margarita damsite near Aguada S 18.393 -67.151 20 1998-'19 245.0 1.30 1.5 38.9 133 

1 Known effect of flow regulation upstream, 2 Known effect of urbanization occurring during period of record, 3 Period of record of peak flows shorter than ten years 
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Table 2: Climatic characteristics of 75 modelled watersheds in Puerto Rico  

[Study Index, numerical identifier of each gage, created for this study; USGS Streamgage, numerical identifier for USGS each 

streamgage station located at basin outlet; Site Name, name describing USGS streamgage station; Type, identifier for data recorded by 

USGS streamgage station (R = rainfall, S = streamflow); Lat., decimal latitude of watershed outlet with NAD83 datum; Lon., decimal 

longitude of watershed outlet with NAD83 datum; MAR, mean annual rainfall; RI-1, 1-yr 24-hour rainfall intensity; RI-2, 2-yr 24-hour 

rainfall intensity; RI-5, 5-yr 24-hour rainfall intensity; RI-10, 10-yr 24-hour rainfall intensity; RI-25, 25-yr 24-hour rainfall intensity; 

RI-50, 50-yr 24-hour rainfall intensity; RI-100, 100-yr 24-hour rainfall intensity] 

Study 
Index  

USGS 
Streamgage 

Site Name Type Lat. Lon. 
MAR 
(mm) 

RI-1 
(mm) 

RI-2 
(mm) 

RI-5 
(mm) 

RI-10 
(mm) 

RI-25 
(mm) 

RI-50 
(mm) 

RI-100 
(mm) 

1 50010500 Río Guajataca at Lares R, S 18.297 -66.873 1917 98 124 162 195 246 290 340 

4 50011200 Río Guajataca below Lago Guajataca S 18.398 -66.927 1920 101 126 153 176 210 237 267 

5 50014800 Río Camuy near Bayaney R, S 18.394 -66.818 1954 103 131 165 197 243 282 325 

6 50021700 Río Grande de Arecibo above Utuado S 18.242 -66.722 1911 100 127 170 210 272 325 384 

8 50024950 Río Grande de Arecibo below Utuado S 18.300 -66.704 1939 103 131 170 206 262 310 363 

9 50025155 Río Saliente at Coabey near Jayuyu S 18.211 -66.563 2240 111 144 200 254 343 422 511 

10 50026025 Río Caonillas at Paso Palma R, S 18.229 -66.637 2088 107 137 187 234 310 376 450 

12 50027000 Río Limon above Lago Dos Bocas R, S 18.324 -66.621 2001 105 133 174 212 272 323 378 

13 50028000 Río Tanama near Utuado R, S 18.299 -66.783 1949 107 137 179 218 279 333 394 

14 50028400 Río Tanama at Charco Hondo S 18.412 -66.714 2030 91 116 148 176 214 245 279 

15 50029000 Río Grande de Arecibo at Central Cambalache R, S 18.454 -66.702 1997 87 111 141 166 199 226 253 

16 50031200 Río Grande de Manatí near Morovis S 18.296 -66.414 1885 110 143 194 238 302 358 417 

19 50034000 Río Gauta near Orocovis S 18.234 -66.454 1985 100 131 182 228 297 358 424 

20 50035000 Río Grande de Manatí at Ciales R, S 18.322 -66.460 1973 108 140 189 232 297 351 411 

21 50038100 Río Grande de Manatí at Highway 2 near Manatí S 18.429 -66.526 1733 96 124 163 196 242 282 320 

23 50038320 Río Cibuco below Corozal S 18.354 -66.335 1927 110 143 191 231 287 333 381 

24 50039500 Río Cibuco at Vega Baja S 18.445 -66.374 1876 98 127 168 202 248 284 325 

25 50039995 Río Carité at spillway R, S 18.075 -66.107 1745 107 141 201 253 328 394 462 

26 50043000 Río de la Plata at Proyecto La Plata R, S 18.158 -66.229 1667 103 137 192 240 310 368 432 

27 50043197 Río Usabón at Highway 162 near Barranquitas R, S 18.160 -66.309 1639 92 122 171 212 272 320 373 

28 50043800 Río de la Plata at Comerio R, S 18.220 -66.224 1659 99 130 181 223 282 333 386 
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Table 2  ̶  Continued 

Study 
Index  

USGS 
Streamgage 

Site Name Type Lat. Lon. 
MAR 
(mm) 

RI-1 
(mm) 

RI-2 
(mm) 

RI-5 
(mm) 

RI-10 
(mm) 

RI-25 
(mm) 

RI-50 
(mm) 

RI-100 
(mm) 

28 50043800 Río de la Plata at Comerio R, S 18.220 -66.224 1659 99 130 181 223 282 333 386 

29 50044810 Río Guadiana near Guadiana S 18.299 -66.228 1834 104 136 184 224 282 328 378 

30 50045010 Río de la Plata below La Plata damsite S 18.344 -66.238 1695 106 138 184 223 279 323 371 

31 50046000 Río de la Plata at Highway 2 near Toa Alta R, S 18.410 -66.261 1711 103 134 179 215 267 307 353 

32 50047535 Río de Bayamón at Arenas R, S 18.167 -66.122 1674 105 139 197 247 320 384 452 

34 50047560 Río de Bayamón below Lago de Cidra Dam S 18.201 -66.139 1671 105 138 195 245 318 378 445 

35 50047850 Río de Bayamón near Bayamón R, S 18.332 -66.139 1735 98 128 175 214 269 318 366 

36 50049100 Río Piedras at Hato Rey R, S 18.408 -66.069 1781 91 118 157 189 232 267 302 

38 50050900 Río Grande de Loíza at Quebrada Arenas S 18.118 -65.988 2023 122 163 231 292 381 460 544 

39 50051310 Río Cayaguas at Cerro Gordo R, S 18.152 -65.956 2245 121 161 228 287 376 452 536 

40 50051800 Río Grande de Loíza at Highway 183 San Lorenzo S 18.184 -65.961 2154 107 142 200 250 323 384 450 

41 50053025 Río Turabo above Borinquen S 18.160 -66.040 1867 104 138 195 244 318 376 442 

42 50055000 Río Grande de Loíza at Caguas S 18.241 -66.009 1995 97 128 180 224 287 343 399 

43 50055225 Río Caguitas at Villa Blanca at Caguas R, S 18.247 -66.027 1763 95 125 176 219 282 333 389 

44 50055380 Río Bairoa bove Abiroa, Caguas S 18.256 -66.044 1770 94 124 174 216 277 328 381 

45 50055750 Río Gurabo below El Mango S 18.232 -65.885 2100 110 146 206 257 330 391 455 

46 50056400 Río Valenciano near Juncos R, S 18.214 -65.926 2030 107 142 200 250 320 381 445 

47 50057000 Río Gurabo at Gurabo S 18.256 -65.968 1975 100 132 186 231 297 353 411 

48 50058350 Río Canas at Río Canas S 18.293 -66.045 1774 102 134 186 230 295 348 406 

49 50059050 Río Grande de Loíza below Loíza damsite R, S 18.340 -66.006 1920 108 141 191 233 292 340 394 

50 50059210 Quebrada Grande at Barrio Dos Bocas S 18.348 -65.990 1791 105 138 188 229 287 338 389 

51 50061800 Río Canovanas near Campo Rico R, S 18.316 -65.889 2007 115 152 212 262 335 396 462 

52 50063800 Río Espíritu Santo near Río Grande R, S 18.358 -65.814 2133 106 141 198 247 318 373 437 

53 50064200 Río Grande near El Verde R, S 18.343 -65.842 2117 115 152 213 264 340 404 472 

54 50065500 Río Mameyes near Sabana S 18.327 -65.750 2273 117 155 218 272 348 414 483 

55 50067000 Río Sabana at Sabana S 18.329 -65.731 2209 116 153 214 267 340 404 472 

56 50070900 Río Fajardo at Paraíso near Fajardo R, S 18.281 -65.701 2378 120 158 222 277 358 424 498 

57 50071000 Río Fajardo near Fajardo S 18.297 -65.693 2325 117 154 215 267 343 406 475 
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Table 2  ̶  Continued 

Study 
Index  

USGS 
Streamgage 

Site Name Type Lat. Lon. 
MAR 
(mm) 

RI-1 
(mm) 

RI-2 
(mm) 

RI-5 
(mm) 

RI-10 
(mm) 

RI-25 
(mm) 

RI-50 
(mm) 

RI-100 
(mm) 

58 50075000 Río Icacos near Naguabo R, S 18.275 -65.785 2406 128 169 240 302 391 467 551 

60 50081000 Río Humacao at Las Piedras S 18.172 -65.869 2098 121 161 227 284 368 439 518 

61 50083500 Río Guayanés near Yabucoa R, S 18.057 -65.901 1983 112 148 210 264 343 409 483 

62 50085100 Río Guayanés at Central Roig S 18.064 -65.874 2083 110 146 207 262 340 406 480 

63 50090500 Río Maunabo at Lizas R, S 18.025 -65.940 1891 107 142 201 252 328 391 460 

64 50092000 Río Grande de Patillas near Patillas R, S 18.032 -66.032 1744 96 128 181 226 292 348 409 

65 50093000 Río Marín near Patillas S 18.036 -66.009 1809 98 130 184 229 295 351 409 

67 50093120 Río Grande de Patillas below Lago Patillas S 18.016 -66.024 1744 97 128 182 228 295 351 409 

70 50100200 Río Lapa near Rabo del Buey S 18.058 -66.241 1558 98 130 185 231 300 356 419 

71 50100450 Río Majada at la Plena S 18.043 -66.207 1716 99 131 186 233 302 361 424 

72 50106100 Río Coamo at Highway 14 at Coamo R, S 18.082 -66.354 1576 99 131 186 234 307 368 434 

74 50110650 Río Jacaguas above Lago Guayabal S 18.115 -66.504 1943 106 139 198 252 338 414 498 

75 50110900 Río Toa Vaca above Lago Toa Vaca S 18.125 -66.457 1845 110 145 206 262 353 432 521 

78 50111500 Río Jacaguas at Juana Díaz R, S 18.052 -66.511 1726 93 124 177 223 292 351 414 

79 50112500 Río Inabón at Real Abajo R, S 18.084 -66.563 2114 108 142 203 259 348 429 518 

80 50113800 Río Cerrillos above Lago Cerrillos near Ponce R, S 18.115 -66.605 1924 119 155 222 287 389 483 587 

82 50114000 Río Cerrillos below Lago Cerrillos near Ponce S 18.071 -66.581 1877 108 142 204 262 351 429 521 

83 50114900 Río Portugues near Tibes R, S 18.098 -66.642 1750 126 166 237 307 422 526 645 

84 50115240 Río Portugues at Parque Ceremonial Tibes R, S 18.042 -66.621 1693 101 133 189 242 323 396 478 

85 50124200 Río Guayanilla near Guayanilla R, S 18.042 -66.798 1528 104 137 196 249 330 401 480 

86 50126150 Río Yauco above Diversión Monserrate near Yauco R, S 18.047 -66.841 1500 111 147 211 267 353 429 513 

87 50129254 Río Loco at Las Latas near La Joya near Guanica S 18.007 -66.876 1322 96 127 182 229 300 361 427 

88 50136400 Río Rosario near Hormigueros R, S 18.158 -67.085 1984 94 121 167 210 277 335 404 

89 50138000 Río Guanajibo near Hormigueros R, S 18.141 -67.148 1710 94 122 167 210 277 335 401 

90 50144000 Río Grande de Añasco near San Sebastián R, S 18.282 -67.051 1888 85 108 142 171 216 254 295 

92 50147800 Río Culebrinas at Highway 404 near Moca R, S 18.360 -67.092 1811 91 116 146 172 211 243 277 

93 50148890 Río Culebrinas at Margarita damsite near Aguada S 18.393 -67.151 1797 95 119 145 168 202 230 259 
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Figure 4: Timeline of streamflow record reported at 75 selected USGS monitoring stations, 

ordered by their Study Index. Both daily (grey) and near real time (red) records are shown. 
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Table 3: Statistical summary of hydrologic and climatic characteristics for 75 modelled 

watersheds in Puerto Rico 

Basin 
Characteristic 

              
Minimum 

                  
Maximum 

               
Median 

                 
Mean 

Standard 
Deviation 

TDA (km2) 3.26 541.31 43.25 102.94 133.94 

DR (m) 0.73 1.50 1.11 1.13 0.17 

CS (%) 0.40 11.18 3.41 4.10 2.52 

CL (km) 0.99 81.47 12.60 18.30 15.92 

PF (m3/s) 24.40 2265.91 322.25 498.75 510.87 

MAR (mm) 1321.82 2406.40 1890.78 1893.39 209.50 

RI-1 (mm) 85.09 127.51 104.14 104.42 9.08 

RI-2 (mm) 108.20 169.42 136.65 136.69 12.88 

RI-5 (mm) 141.22 240.28 186.94 188.92 22.28 

RI-10 (mm) 165.61 307.34 231.90 234.50 31.54 

RI-25 (mm) 199.39 421.64 299.72 302.27 46.54 

RI-50 (mm) 226.06 525.78 358.14 359.94 60.76 

RI-100 (mm) 252.98 645.16 419.10 422.85 77.25 

3.3.1 Local Hydrologic Data 

As shown in Figure 4, the record for many active streamgages in Puerto Rico extends 

past 2 decades. While model analysis only necessitates the use of the most recent records, 

historical data allowed me to complete flood frequency analysis across the main island. 

Understanding historical peak flows has informed the modelling analysis detailed in Chapter 6. 

The magnitude of 10-yr floods occurring at each streamgage site, listed in Table 1, was 

estimated using the USGS Bulletin 17B guidelines for determining flood flow frequency. 

Bulletin 17B recommends using the method-of-moments (MOM) to fit a Pearson type 3 (P3) 

distribution to the logarithms of the flood series, thereby yielding a log-Pearson type 3 (LP3) 

distribution to model observed streamflow data. Estimates of the mean, standard deviation, and 

skew coefficient of the logarithms of the sample data are computed using traditional moment 

estimators. However, because available at sites across the main island of Puerto Rico are mostly 

limited to less than 30 years, the skewness estimator is likely unstable (Stedinger & Griffis, 
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2008). In addition, the skew coefficient in LP3 analysis for short records is highly sensitive to 

extreme events. To address these issues, I weighted the at-site skew with a regional skewness 

estimator for two regions in Puerto Rico, where the recommended weights are inversely 

proportional to the precision of each estimator. While the average skew for the entire main island 

of Puerto Rico has been reported to be near zero, I have utilized published regional skew 

coefficients that divide the island into the North Coast-East Coast (NC-EC) and the South Coast-

West Coast (SC-WC) skew regions (López et al., 1979; United States Water Resources Council, 

1978). Figure 6 shows the location of each USGS streamgage station on the main rivers they 

monitor within each region.  

A review of the 2,416 recorded annual maximum peak-discharges with known dates at 

the 75 modelled watersheds show that 72 percent of the peaks (1735 peaks) occurred during the 

6-month-long hurricane season, June 1 to November 30 each year, as illustrated in Figure 5. 
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Figure 5: Monthly occurrence of 2,416 annual maximum peak discharges for 

75 stream-gaged sites in Puerto Rico, from 1899 to 2019  
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Figure 6: Locations of USGS streamgages within Puerto Rico Skew Regions, numbered by Study Index as listed 

in Table 1. Streams provided by National Hydrography Dataset Plus (Moore & Dewald, 2016). 
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3.3.2 Local Climatic and Meteorological Data 

 Together, the USGS and NOAA report weather data from 130 stations across the main 

island of Puerto Rico. While the NOAA stations provide insight into the historical climate of 

Puerto Rico, the USGS stations allow for validation of remote sensing estimates of daily rainfall. 

Table 4 and Table 5 list the active raingages and weather stations used in this study with some 

basic characteristics, while Figure 7 shows their location alongside USGS streamgages.  

Mean annual rainfall accumulations for each modelled watershed was estimated using 

NOAA’s 1981- 2010 climate normals, the latest decadal installment of 30-yr averages and other 

statistics of meteorological variables for the United States and its territories. Climate normals of 

annual rainfall were provided at 51 NOAA weather stations located across the main island of 

Puerto Rico (Arguez et al., 2012). In addition, the intensity of 24-hour storms was estimated 

using NOAA Atlas 14, the official United States government source of precipitation frequency 

estimates. Point values of mean annual rainfall and 24-hour storm intensity were interpolated 

using an ordinary kriging method that has seen popular use in basic meteorological applications 

(Noel, 1990). Then, basin averages were calculated at each of the 75 modelled basins, shown in 

Table 1. 

The USGS reports daily rainfall accumulations at 79 raingage stations operated by the 

JCA, AEEPR, AAAPR, and USACE. Nearly 47% (37 stations) have a record shorter than one 

full year. Data gathered by these stations was only used to validate GPM IMERG estimates of 

rainfall when available. Figure 8 shows a timeline of rain accumulation records at 79 USGS 

raingage sites compared to the record of GPM rainfall estimates. 
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Figure 7: Gage locations. Streams provided by National Hydrography Dataset Plus (Moore & Dewald, 2016). 
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Table 4: Active USGS Raingages on main island of Puerto Rico  

[Study Index, numerical identifier of each gage, created for this study; USGS Raingage, 

numerical identifier for each USGS raingage station; Site Name, name describing USGS 

raingage station; Type, identifier for data recorded by USGS raingage station (R = rainfall, S = 

streamflow); Lat., decimal latitude of watershed outlet with NAD83 datum; Lon., decimal 

longitude of watershed outlet with NAD83 datum] 

Study 
Index  

USGS Raingage Site Name Type Lat. Lon. 
Years of 
Record 

Period of 
Record 

1 50010500 Río Guajataca at Lares R, S 18.297 -66.873 3 2016-'19 

2 50010800 Lago Guajataca at damsite near Quebradillas R 18.400 -66.923 <1 2018-'19 

3 50011088 Lago Regulador de Isabela near Highway 112 Isabella R 18.459 -67.030 3 2016-'19 

5 50014800 Río Camuy near Bayaney R, S 18.394 -66.818 <1 2018-'19 

7 50023110 Lago Vivi near Utuado R 18.231 -66.679 3 2016-'19 

10 50026025 Río Caonillas at Paso Palma R, S 18.229 -66.637 <1 2018-'19 

11 50026140 Lago Caonillas at damsite near Utuado R 18.279 -66.657 <1 2018-'19 

12 50027000 Río Limon above Lago Dos Bocas R, S 18.324 -66.621 <1 2018-'19 

13 50028000 Río Tanama near Utuado R, S 18.299 -66.783 3 2016-'19 

15 50029000 Río Grande de Arecibo at Central Cambalache R, S 18.454 -66.702 3 2016-'19 

17 50032290 Lago Guineo at damsite near Villalba R 18.161 -66.526 <1 2018-'19 

18 50032590 Lago de Matrullas at damsite near Orocovis R 18.213 -66.481 3 2016-'19 

20 50035000 Río Grande de Manatí at Ciales R, S 18.322 -66.460 <1 2018-'19 

22 50038300 Río Corozal at Corozal R 18.345 -66.322 <1 2018-'19 

25 50039995 Río Carité at spillway R, S 18.075 -66.107 <1 2018-'19 

26 50043000 Río de la Plata at Proyecto La Plata R, S 18.158 -66.229 <1 2018-'19 

27 50043197 Río Usabón at Highway 162 near Barranquitas R, S 18.160 -66.309 3 2016-'19 

28 50043800 Río de la Plata at Comerio R, S 18.220 -66.224 3 2016-'19 

31 50046000 Río de la Plata at Highway 2 near Toa Alta R, S 18.412 -66.261 <1 2018-'19 

32 50047535 Río de Bayamón at Arenas R, S 18.167 -66.122 <1 2018-'19 

33 50047550 Lago de Cidra at damsite near Cidra R 18.199 -66.141 3 2016-'19 

35 50047850 Río de Bayamón near Bayamón R, S 18.332 -66.139 <1 2018-'19 

36 50049100 Río Piedras at Hato Rey R, S 18.408 -66.069 <1 2018-'19 

37 50049620 Quebrada Margarita at Caparra near Guaynabo R 18.416 -66.103 3 2016-'19 

39 50051310 Río Cayaguas at Cerro Gordo R, S 18.152 -65.956 3 2016-'19 

43 50055225 Río Caguitas at Villa Blanca at Caguas R, S 18.247 -66.027 3 2016-'19 

46 50056400 Río Valenciano near Juncos R, S 18.214 -65.926 3 2016-'19 

49 50059050 Río Grande de Loíza below Loíza damsite R, S 18.340 -66.006 <1 2018-'18 

51 50061800 Río Canovanas near Campo Rico R, S 18.316 -65.889 <1 2018-'19 

52 50063800 Río Espíritu Santo near Río Grande R, S 18.358 -65.814 2 2017-'19 

53 50064200 Río Grande near El Verde R, S 18.343 -65.842 <1 2018-'19 

56 50070900 Río Fajardo at Paraíso near Fajardo R, S 18.281 -65.701 <1 2018-'19 

58 50075000 Río Icacos near Naguabo R, S 18.275 -65.785 3 2016-'19 

59 50076800 Lago Blanco near Naguabo R 18.226 -65.782 <1 2018-'19 

61 50083500 Río Guayanés near Yabucoa R, S 18.057 -65.901 <1 2018-'19 

63 50090500 Río Maunabo at Lizas R, S 18.025 -65.940 <1 2018-'19 

64 50092000 Río Grande de Patillas near Patillas R 18.032 -66.032 <1 2018-'19 
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Table 4  ̶  Continued 

Study 
Index  

USGS Raingage Site Name Type Lat. Lon. 
Years of 
Record 

Period of 
Record 

66 50093045 Lago Patillas at damsite near Patillas R 18.020 -66.019 3 2016-'19 

68 50095000 Canal de Guamani Oeste at Highway 15 Guayama R 18.003 -66.116 <1 2018-'19 

69 50095800 Lago Melania near Guayama R 17.981 -66.145 2 2017-'19 

72 50106100 Río Coamo at Highway 14 at Coamo R, S 18.082 -66.354 3 2016-'19 

73 50106850 Lago Coamo near Los Llanos R 18.016 -66.390 3 2016-'19 

76 50111210 Lago Toa Vaca at damsite near Villalba R 18.104 -66.489 3 2016-'19 

77 50111300 Lago Guayabal at damsite near Juana Diaz R 18.088 -66.502 <1 2018-'19 

78 50111500 Río Jacaguas at Juana Díaz R, S 18.052 -66.511 <1 2018-'19 

79 50112500 Río Inabón at Real Abajo R, S 18.084 -66.563 <1 2018-'19 

80 50113800 Río Cerrillos above Lago Cerrillos near Ponce R, S 18.115 -66.605 <1 2018-'19 

81 50113950 Lago Cerrillos at damsite near Ponce R 18.079 -66.576 2 2017-'19 

83 50114900 Río Portugues near Tibes R, S 18.098 -66.642 3 2016-'19 

84 50115240 Río Portugues at Parque Ceremonial Tibes nr Ponce R, S 18.042 -66.621 3 2016-'19 

85 50124200 Río Guayanilla near Guayanilla R, S 18.042 -66.798 <1 2018-'19 

86 50126150 Río Yauco above Diversión Monserrate near Yauco R, S 18.047 -66.841 3 2016-'19 

88 50136400 Río Rosario near Hormigueros R, S 18.158 -67.085 <1 2018-'19 

89 50138000 Río Guanajibo near Hormigueros R, S 18.141 -67.148 <1 2018-'19 

90 50144000 Río Grande de Añasco near San Sebastián R, S 18.282 -67.051 <1 2018-'19 

91 50146073 Lago Daguy above Añasco R 18.301 -67.129 <1 2018-'19 

92 50147800 Río Culebrinas at Highway 404 near Moca R, S 18.360 -67.092 <1 2018-'19 

94 50999954 Quebrada Salvatierra Raingage at San Lorenzo R 18.179 -65.998 <1 2018-'19 

95 50999956 Quebrada Blanca Raingage at San Lorenzo R 18.162 -65.998 3 2016-'19 

96 50999958 Pueblito del Río Raingage at Las Piedras R 18.248 -65.832 3 2016-'19 

97 50999959 Gurabo Abajo Raingage at Gurabo R 18.267 -65.913 <1 2018-'19 

98 50999960 Quebrada Arenas Raingage at San Lorenzo R 18.114 -65.947 3 2016-'19 

99 50999961 La Plaza Raingage at Caguas R 18.136 -66.050 3 2016-'19 

100 50999962 Canaboncito Raingage at Aguas Buenas R 18.215 -66.107 3 2016-'19 

101 50999963 Jagueyes Abajo Raingage at Aguas Buenas R 18.289 -66.076 3 2016-'19 

102 50999964 Bairoa Arriba Raingage at Aguas Buenas R 18.266 -66.096 3 2016-'19 

103 50999965 Vaquería El Mimo Raingage at Caguas R 18.214 -66.067 3 2016-'19 

104 50999966 Barrio Beatriz Raingage at Caguas R 18.183 -66.089 3 2016-'19 

105 50999967 Barrio Montones Raingage at Las Piedras R 18.163 -65.911 3 2016-'19 

106 50999968 Las Piedras Construction Raingage at Las Piedras R 18.204 -65.841 2 2017-'19 

107 50999970 Barrio Apeadero Raingage near Villalba R 18.159 -66.459 3 2016-'19 

108 175858066100200 Jua 5 Well at Guayama R 17.983 -66.167 3 2016-'19 

109 180122066560300 Arenas 1 Well at Guanica R 18.022 -66.934 <1 2018-'19 

110 181026066100300 Barrio Rabanal Raingage at Cidra R 18.174 -66.168 3 2016-'19 

111 181529065575200 Gurabo Raingage at Gurabo R 18.258 -65.964 3 2016-'19 

112 181708066152400 Barrio Anones Raingage near Naranjito R 18.286 -66.257 3 2016-'19 

113 182134066544600 Barrio Guajataca Raingage above Lago Guajataca R 18.359 -66.913 2 2017-'19 

114 182350066063700 Raingage near Altamira Guaynabo R 18.397 -66.110 3 2016-'19 

115 182647066201700 Sabana Hoyos 2 Well at Vega Alta R 18.446 -66.339 3 2016-'19 
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 Figure 8: Timeline of daily raingage record reported at 79 selected USGS monitoring stations 

ordered by their Study Index (green), and the record of GPM IMERG data releases (black). 

GPM 
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Table 5: Active NOAA weather stations reporting 1981- 2010 precipitation climate normals on 

main island of Puerto Rico 

[Study Index, numerical identifier of each gage, created for this study; NOAA Station, numerical 

identifier for each NOAA weather station; Site Name, name describing NOAA weather station; 

Lat., decimal latitude of watershed outlet with NAD83 datum; Lon., decimal longitude of 

watershed outlet with NAD83 datum; Annual Rainfall, reported annual precipitation climate 

normal at each station] 

Study 
Index  

NOAA Station Site Name Lat. Lon. 
Years of 
Record 

Period of 
Record 

Annual 
Rainfall (mm) 

116 RQC00660040 Aceituna Water Treatment Plant 18.147 -66.492 30 1981-'10 1942 

117 RQC00660053 Adjuntas 1 NW 18.161 -66.722 30 1981-'10 1972 

118 RQC00660061 Adjuntas Substation 18.175 -66.798 30 1981-'10 1997 

119 RQC00660152 Aguirre 17.956 -66.222 30 1981-'10 1009 

120 RQC00660158 Aibonito 1 S 18.128 -66.264 30 1981-'10 1530 

121 RQC00660426 Arecibo Observatory 18.349 -66.753 30 1981-'10 2137 

122 RQC00660668 Barceloneta 3 SW 18.429 -66.563 30 1981-'10 1589 

123 RQC00662316 Boca 17.991 -66.816 30 1981-'10 846 

124 RQW00011603 Borinquen Airport 18.498 -67.129 30 1981-'10 1390 

125 RQC00661142 Cacaos Orocovis 18.226 -66.504 30 1981-'10 2155 

126 RQC00661345 Calero Camp 18.472 -67.116 30 1981-'10 1466 

127 RQC00661590 Canovanas 18.379 -65.894 30 1981-'10 1963 

128 RQC00661901 Cayey 1 E 18.119 -66.166 30 1981-'10 1501 

129 RQC00662336 Cerro Maravilla 18.155 -66.562 30 1981-'10 2523 

130 RQC00662801 Coloso 18.381 -67.157 30 1981-'10 1925 

131 RQC00662934 Corozal Substation 18.327 -66.359 30 1981-'10 1975 

132 RQC00663023 Corral Viejo 18.084 -66.655 30 1981-'10 1582 

133 RQC00663431 Dos Bocas 18.336 -66.667 30 1981-'10 1942 

134 RQC00663532 Ensenada 1 W 17.973 -66.946 30 1981-'10 858 

135 RQC00663657 Fajardo 18.310 -65.663 30 1981-'10 1709 

136 RQC00663904 Guajataca Dam 18.396 -66.924 30 1981-'10 1933 

137 RQC00664193 Guayama 2 E 17.978 -66.087 30 1981-'10 1386 

138 RQC00664276 Gurabo Substation 18.258 -65.992 30 1981-'10 1653 

139 RQC00664702 Isabela Substation 18.465 -67.053 30 1981-'10 1650 

140 RQC00664867 Jajome Alto 18.072 -66.143 30 1981-'10 1934 

141 RQC00665020 Juana Diaz Camp 18.051 -66.499 30 1981-'10 1071 

142 RQC00665064 Juncos 1 SE 18.226 -65.911 30 1981-'10 1737 

143 RQC00665097 Lajas Substation 18.033 -67.072 30 1981-'10 1219 

144 RQC00665693 Magueyes Island 17.972 -67.046 30 1981-'10 1101 

145 RQC00665807 Manatí 2 E 18.431 -66.466 30 1981-'10 1566 

146 RQC00665908 Maricao 2 SSW 18.151 -66.989 30 1981-'10 2307 

147 RQC00666083 Mayaguez Airport 18.254 -67.149 30 1981-'10 2167 

148 RQC00666073 Mayaguez City 18.188 -67.138 30 1981-'10 1510 

149 RQC00666361 Mora Camp 18.474 -67.029 30 1981-'10 1540 

150 RQC00666390 Morovis 1 N 18.334 -66.408 30 1981-'10 1856 

151 RQC00666514 Negro Corozal 18.289 -66.343 30 1981-'10 1913 
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Table 5  ̶  Continued 

Study 
Index  

NOAA Station Site Name Lat. Lon. 
Years of 
Record 

Period of 
Record 

Annual 
Rainfall (mm) 

152 RQC00666805 Paraíso 18.265 -65.721 30 1981-'10 2543 

153 RQC00666983 Penualas 1 E 18.059 -66.718 30 1981-'10 1480 

154 RQC00667292 Ponce 4 E 18.026 -66.525 30 1981-'10 977 

155 RQC00668126 Rincon 18.338 -67.250 30 1981-'10 1522 

156 RQC00668144 Río Blanco Lower 18.243 -65.785 30 1981-'10 2721 

157 RQC00668306 Río Piedras Experimental Station 18.391 -66.054 30 1981-'10 1798 

158 RQW00011630 Roosevelt Roads 18.255 -65.641 30 1981-'10 1329 

159 RQW00011641 San Juan L M Marin Int’l. Airport 18.433 -66.011 30 1981-'10 1431 

160 RQC00668815 San Lorenzo 3 S 18.152 -65.959 30 1981-'10 2406 

161 RQC00668940 Santa Isabel 17.969 -66.377 30 1981-'10 921 

162 RQC00669432 Toro Negro Forest 18.173 -66.493 30 1981-'10 2361 

163 RQC00669521 Trujillo Alto SSW 18.328 -66.016 30 1981-'10 1792 

164 RQC00669774 Villalba 1 SE 18.109 -66.506 30 1981-'10 1464 

165 RQC00668814 Weather Forecast Office San Juan 18.431 -65.992 30 1981-'10 1857 

166 RQC00669860 Yauco 1 NW 18.044 -66.861 30 1981-'10 1206 
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CHAPTER 4: SATELLITE REMOTE SENSING DATA 

4.1 Introduction 

Satellite remote sensing provides major sources of consistent, continuous data for 

atmospheric, ocean, and land studies at a variety of spatial and temporal scales across the globe. 

This is a powerful tool for experts in hydroscience and engineering to characterize and 

understand Earth system processes as they influence the movement and storage of water 

resources. Satellites measure a variety of physical quantities to gain insight into the complex 

water and energy cycles of Earth. 

This chapter describes the three datasets gathered via satellite remote sensing that were 

used to build and operate watershed streamflow models across the main island of Puerto Rico:  

(1) Elevation data obtained by the Space Shuttle Endeavour through the Shuttle Radar 

Topography Mission   

(2) Rainfall estimates gathered by a constellation of satellites through the Global 

Precipitation Measurement Mission 

(3) Evapotranspiration estimates collected by Moderate Resolution Imaging 

Spectroradiometer sensors aboard the Aqua and Terra satellites  

The data products detailed here are unique because they offer benefit to global populations, not 

just local citizens. This is the power of satellite remote sensing. 

4.2 Elevation from Shuttle Radar Topography Mission 

 Predicting spatial patterns and rates of runoff generation requires both a hydrologic 

model and characterization of the land surface. Most physically based models of hydrologic and 

geomorphic processes rely on spatially distributed or lumped characterizations of local slope and 
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the drainage area (Beven & Kirkby, 2010; O’Loughlin, 1986). To understand the topography of 

Puerto Rico’s terrain, I assembled a series of basin-scale Digital Elevation Models (DEM) built 

from elevation data gathered by the Shuttle Radar Topography Mission (SRTM).  

SRTM is an international research effort spearheaded by the U.S. National Geospatial-

Intelligence Agency (NGA) and NASA that obtained digital elevation models on a near-global 

scale. SRTM consisted of a dual-antenna radar system mounted to the Space 

Shuttle Endeavour during its 11-day mission in February 2000. Although SRTM gathered a 

single set of raw data, multiple products have been released of increasing resolution and quality. 

SRTM provides elevation data between latitudes 56°S to 60°N.  

4.2.1 SRTM Radar Instrument Remote Sensing 

During its 11-day mission, Space Shuttle Endeavour orbited Earth 16 times. The shuttle’s 

cargo bay was outfitted with an active main antenna. Once the shuttle was in space, a mast 

extended out 60 meters from the main antenna truss. At the end of the mast, the passive outboard 

antenna acted as the second vantage point to receive radar signals. The main radar antenna 

transmitted a radar pulse toward Earth that was received by both the main radar antenna and the 

outboard antenna.  

The SRTM instruments transmitted and collected two radar frequency bands. Both the 

main antenna and outboard antenna each contained C-Band and X-Band panels. The C-Band 

panel on the main antenna could transmit and receive radar signals with a wavelength of 5.6 

centimeters. Its swath width was 225 kilometers, covering about 80% of Earth’s land surface. 

The X-Band panel on the main antenna could transmit and receive radar signals with a 

wavelength of 3 centimeters. Its swath width was 50 kilometers, providing higher resolution data 
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with less coverage over Earth’s land surface. The outboard antenna received both the C-Band 

and X-Band signals but did not transmit pulses from its radar panels. These two synthetic 

aperture radar antennae collected independent images of Earth’s surface that were combined to 

create an interferometric radar dataset of land surface elevation. 

4.2.2 SRTM Data Processing and Integration 

NASA’s SRTM C-Band data processing system was comprised of three parts: 

interferometric processor, which converted the raw radar data into a height map and radar image 

strips; mosaic processor, compiled a mosaic of the height and image data one continent at a time 

from the many radar image strips; and the verification system, which tested the mosaics for 

quality, producing an accuracy map. In September 2014, a 1 arc-second near-global digital 

elevation model was released, providing elevation data for Puerto Rico with a spatial resolution 

of approximately 90 meters. The SRTM-derived DEM of Puerto Rico is shown in Figure 9.  

  

Figure 9: Topography of Puerto Rico from Shuttle Radar Topography Mission 1 arc-second 

Digital Elevation Model 
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4.3 Rainfall from Global Precipitation Measurement Mission 

 Rainfall drives runoff and potential flood disasters. As such, estimating rainfall 

accurately is crucial in understanding flood risk. The Global precipitation Measurement (GPM) 

Mission was launched in February 2014 to record frequent observations of Earth’s precipitation. 

I utilized GPM observations to better understand the behavior or rainfall patterns over Puerto 

Rico and drive watershed runoff models across the island.   

Operationally, the GPM mission is an international network of satellites that provide 

global estimates of rain and snow. In total, 13 satellites comprise this network, referred to as the 

“GPM constellation.” At the heart of this constellation is the GPM Core Observatory. Its launch 

marks the beginning of the GPM mission in 2014. In fact, none of the other partner satellites 

were build and launched specifically for the GPM mission. Instead, this joint mission from 

NASA and the Japan Aerospace Exploration Agency (JAXA) integrates data already being 

gathered by satellites that were launched by other scientific agencies for other purposes. As a 

part of the GPM mission, data from the dozen partner satellites are converted to precipitation 

observations. Each satellite has a unique orbit and coverage zone so that a broad snapshot of 

Earth’s precipitation can be provided at any point of the day. The GPM Core Observatory is so 

critical because its orbit overlaps all others, providing a common reference for all other satellites 

so that the GPM dataset may be calibrated to match up over its near-global footprint extending 

from latitudes 60°S to 60°N. (Hou et al., 2013). 
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4.3.1 GPM Core Observatory Remote Sensing  

The Core satellite uses two measurement instruments, the GPM Microwave Imager 

(GMI) and the Dual-frequency Precipitation Radar (DPR). Together, these two instruments 

provide measurements against which partner satellite microwave measurements may be 

compared. Figure 10 illustrates the configuration of the GMI and DPR on the Core Observatory 

with their coverage swaths. 

 

The GMI is a powerful conical-scan microwave radiometer that delivers thirteen high-

frequency channels of atmosphere brightness temperature measurements. Its 1.2-meter diameter 

antenna rotates 32 times per minute, providing improved spatial resolution from its predecessor, 

the microwave imager aboard the Tropical Rainfall Measurement Mission (TRMM). The GMI 

Figure 10: GPM Core Observatory instrument configuration and coverage (Hou et al., 2013) 
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measures the intensity of microwave energy emitted by the atmosphere. The amount of radiation 

received is expressed as the brightness temperature. In the microwave region, absorption lines 

show spikes in brightness temperature used to profile temperature profiles, humidity, and other 

atmospheric conditions. GMI observations are used to derive vertical profiles of water vapor and 

ultimately rainfall rate. Note once again that GMI instrumentations enables the Core spacecraft 

to serve as both a precipitation standard and as a radiometric standard for the other GPM 

constellation members. 

The DPR consists of a Ku-band precipitation radar (KuPR) and a Ka-band precipitation 

radar (KaPR). Much like the GMI, these devices that comprise the DPR are new and improved 

versions of devices flows on the TRMM satellite. Data collected from the KuPR and KaPR units 

provides 3-dimensional observations of rain in addition to an accurate estimation of rainfall rate 

with a sensitivity of 0.2 mm/hr. KaPR is used primarily to detect snow and light rain, even in 

high altitude environments. The KuPR is used primarily to detect heavy rainfall. The DPR 

utilizes differential attenuation observed by these two devices to determine if rain or snow is 

being measured.  

4.3.2 GPM Data Processing and Integration via IMERG 

A variety of Global Precipitation Measurement mission datasets are available, from raw 

brightness temperature observations to precipitation estimates from combined satellite and 

raingage measurements. The algorithm and processing sequence for the Integrated Multi-

SatellitE Retrievals for GPM (IMERG) is intended to intercalibrate, merge, and interpolate 

satellite all available microwave precipitation estimates from the entire GPM constellation with 

microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and other 
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precipitation estimators. This process described fully within the Version 5 Algorithm Theoretical 

Basis Document (ATBD) for IMERG (Huffman et al., 2018).   

Passive microwave sensors aboard the low-earth-orbit GPM constellation satellites 

provide the majority of the satellite-based precipitation measurements. IMERG compensates for 

the limited sampling rate of the GPM constellation satellites by combining with data from all 

other low-earth-orbit satellites and then augmenting the net product with geosynchronous-Earth-

orbit IR estimates. Finally, precipitation gauge analyses are used to provide crucial regional bias 

correction to the combined satellite estimates.  

The IMERG system is comprised of the following rainfall retrieval algorithms: the 

Climate Prediction Center Morphing-Kalman Filter (CMORPH-KF) (Joyce & Xie, 2011), the 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-

Cloud Classification System (PERSIANN-CCS) (Hong, Hsu, & Gao, 2004), and the TRMM 

Multi-Satellite Precipitation Analysis (TMPA) (Huffman et al., 2007). Since the release of 

IMERG data in April 2014, extensive studies have been devoted to the evaluation of the IMERG 

rainfall estimates compared to ground observations such as radars and gauges, or to other 

existing satellite rainfall data (Gaona, Overeem, Leijnse, & Uijlenhoet, 2016; Ndayisaba et al., 

2016; Pai et al., 2016; Sharifi, Steinacker, & Saghafian, 2016; Tan, Petersen, & Tokay, 2016). 

An intercomparison study between the data using a hydrological model, that the IMERG 

products can adequately substitute TMPA products, both statistically and hydrologically (Tang, 

Ma, Long, Zhong, & Hong, 2016). 

IMERG delivers GPM’s highest resolution dataset at 0.1º maximum spatial resolution 

and 30-minute temporal resolution. Figure 11 shows the footprint of this GPM IMERG product 

over the main island of Puerto Rico. IMERG products are available in the form of near-real-time 
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data, i.e., IMERG Early Run and Late Run, and in the form of post-real-time research data, i.e., 

IMERG Final Run, after monthly raingage analysis is received and taken into account. IMERG 

Early Run, Late Run, and Final Run data is released with a latency of 4 hours, 12 hours, and 2.5 

months after observation time, respectively. While reducing this latency is crucial to operational 

forecasting systems, I chose to utilize IMERG Late Run data because it performs better than 

Early Run releases and is not gage-corrected like Final Run releases (Sungmin et al., 2017; 

Wang, Zhong, Lai, & Chen, 2017).  

4.4 Evapotranspiration from Moderate Resolution Imaging Spectroradiometer 

Evapotranspiration is a key component of the global water cycle, constituting a 

significant water loss from drainage basins. On an annual basis, evapotranspiration (ET) is the 

largest consumptive use of water and is usually the second most important quantity in regional 

water budgets, second only to rainfall. It is not unusual for ET to consume around 70% of global 

Figure 11: Integrated Multi-SatellitE Retrievals for Global Precipitation Measurement 0.1º 

spatial resolution product footprint over Puerto Rico with river network extracted from 

Shuttle Radar Topography Mission 1 arc-second Digital Elevation Model 
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rainfall on an annual basis (Chin, 2013). Evaporation is the process by which water is 

transformed from the liquid phase to the vapor phase, and transpiration by which water moves 

through plants and evaporates through leaf stomata. It is difficult to differentiate between these 

processes where the ground surface is covered by vegetation like Puerto Rico, but combined ET 

estimates are sufficient in modelling outward water flux from watersheds to the atmosphere. 

Traditionally, actual evapotranspiration has been computed as a residual in water 

balance equations, from estimates of potential evapotranspiration or, indirectly, from field 

measurements at meteorological stations (Kite & Droogers, 2000). But, modern remote sensing 

methods are now recognized as the most feasible means to provide such regional ET estimates 

over vegetated land surfaces (Courault, Seguin, & Olioso, 2005; Jiang & Islam, 1999; Kustas & 

Norman, 1996). To estimate evapotranspiration rates across Puerto Rico, I used estimates 

obtained by the Moderate Resolution Imaging Spectroradiomenter (MODIS). 

MODIS is a key instrument carried by the NASA Earth Observing System AM-1 

satellite, also known as “Terra,” and NASA Earth Observing System PM-1 satellite, also known 

as “Aqua.” Terra's orbit around the Earth is timed so that it passes from north to south across the 

equator in the morning, while Aqua passes south to north over the equator in the afternoon. 

Together, the MODIS devices aboard these satellites have sweeping 2,330-km wide viewing 

swaths that cover the entire Earth's surface every two days.   

4.4.1 MODIS Instrument Remote Sensing 

MODIS is designed to measure spectral radiance across 36 spectral bands ranging from 

0.405 to 14.385 µm. It does so by detecting an analog signal of oncoming photons and 

converting it into digital data. Light that is reflected or emitted by the Earth back to outer space 
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will pass through MODIS' scan aperture, enter into the scan cavity, and hit the scan mirror that 

reflects the incoming light onto MODIS' internal telescope, which in turn focuses the light onto 

four different detector assemblies. 

First, light passes through the scan aperture. En route to the detector assemblies, light 

passes through spectral filters and beamsplitters that divide the light into wavelength bands 

within the scan cavity. Photons then strike one of four detector assemblies depending on its 

wavelength. MODIS is equipped with detectors for visible light, near infrared, 

shortwave/midwave infrared, and longwave infrared detection. Each time a photon strikes these 

detectors an electron is displaced and collected on a capacitor. They accumulate until they can be 

routed to a digitizer which converts the electrons from an analog signal to raw digital data.  

4.4.1 MODIS Data Processing and Integration 

Many ATBDs were developed for the MODIS devices aboard the Aqua & Terra 

Satellites. The algorithms described within utilize both physical theory and mathematical 

procedures with fundamental assumptions to convert the radiances received by the instruments to 

geophysical quantities describing behavior of the atmosphere, land, cryosphere, and ocean. Over 

30 data products are released using MODIS measurements, each requiring its own ATBD that 

describes how earth system processes are assessed using radiance observations as a proxy. The 

NASA MOD16A2/A3 ATBD describes how evapotranspiration is estimated over the 109.03 

million km2 global vegetated land area.  

The global 8-day (MOD16A2) and annual (MOD16A3) datasets provide terrestrial 

evapotranspiration estimates at 0.125° (~0.5-km) spatial resolution. The algorithm takes into 

account evaporation from wet and moist soil, evaporation from rainwater intercepted by the 
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canopy before it reaches the ground, and transpiration through stomata on foliage. It follows the 

logic of the Penman-Monteith physical model, while having to hurdle over its associated 

challenges like requiring meteorological forcing data and aerodynamic and surface resistance 

inputs. This is made possible by daily meteorological data provided by NASA’s Global 

Modeling and Assimilation Office (GMAO), which is derived using a global circulation model 

(GCM) that incorporates both remote sensing and in-situ measurements (Mu et al., 2013). Figure 

12 shows a MODIS estimate of monthly evapotranspiration over Puerto Rico.  

 

 

 

 

 

  

Figure 12: Moderate Resolution Imaging Spectroradiometer estimates of monthly 

evapotranspiration rate over the main island of Puerto Rico during August 2014 
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CHAPTER 5: METHODOLOGY 

5.1 Introduction 

To model streamflow and runoff across Puerto Rico, I adopted a geomorphologic 

partitioning of the island’s natural terrain into links and hillslopes built from the SRTM-derived 

DEM. Links are defined as the portion of a channel between two junctions of a river network, 

and hillslopes are the adjacent areas that drain into the link. Hillslope-link models (HLMs) 

provide basic units of landscape organization into which a drainage basin is partitioned. Each 

hillslope-link unit defines a single natural finite control volume for modelling water transport 

(Mantilla, 2007; Mantilla & Gupta, 2005).  

Water transport, in and out of hillslope-link units, was modeled using the Iowa Flood 

Center Top Layer hydrologic model. It separates the terrain into vertical soil layers, using 

ordinary differential equations (ODEs) to describe hillslope-link water transport processes 

including infiltration, percolation, runoff, evapotranspiration, and storage. Chapter 5.2 describes 

the governing equations and parameters that simulate each process. Chapter 5.3, Chapter 5.4, and 

Chapter 5.5 detail how local and satellite remote sensing data products were used as model 

forcings and parameters. Chapter 5.6 and Chapter 5.7 describe model setup and operation.  

5.2 Iowa Flood Center Top Layer Hydrologic Model Description 

The IFC Top Layer model is the current standard hillslope-link conceptual model used by 

the Iowa Flood Center, often referred to by its numerical code, “HLM-ASYNCH-254.” This 

model represents the soil column as three vertical layers: the terrain surface, an upper soil layer 

referred to as the “top layer,” and a lower soil layer referred to as the “subsurface.” Each of these 

three layers acts as a storage volume and can generate streamflow in rates that vary in time. The 
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IFC Top Layer model is operated by modelling water fluxes from precipitation at a high 

temporal resolution (5-minute to hourly) and evapotranspiration rates at a low temporal 

resolution (daily or monthly) (Quintero, Mantilla, Anderson, Claman, & Krajewski, 2018).  

5.2.1 IFC Top Layer Model Governing Equations Description 

The IFC Top Layer model is governed by the following equations: 

𝑑𝑞

𝑑𝑡
 =  

1

𝜏
(

𝑞

𝑞𝑟
)

𝜆1

(−𝑞 +  𝑐2 (𝑞𝑝𝑐 + 𝑞𝑠𝑐) + 𝑞𝑖𝑛(𝑡)) 

1

𝜏
 =  

60 ∙  𝑣𝑟  ∙  (𝐴𝑢𝑝 𝐴𝑟⁄ )
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(𝐴ℎ𝑞𝑠𝑐 − 60 ∙ 𝑞𝑏 + 𝑞𝑏,𝑖𝑛(𝑡)) 
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where q(t) is the channel discharge (m3/s) at time t, qb(t) is the channel discharge from baseflow 

(m3/s) at time t, p(t) is the precipitation rate (mm/hr) at time t, and epot(t) is the potential 

evaporation rate (mm/hr) at time t. Additionally, qin(t) is the total discharge entering the channel 

from the directly upstream channels (m3/s) at time t, while qb,in(t) is the total discharge from 

baseflow entering the channel from the directly upstream channels at time t. The water column is 

represented by sp for storage ponded on the surface (m), st for storage in the top layer (m), and ss 

for storage in the subsurface (m). sprecip(t) is the total fallen precipitation (m3) from time 0 to 

time t, and Vr(t) is the total volume of water transported as runoff (m3) from time 0 to time t.  

 Water fluxes move water around the different layers of the hillslope, and other fluxes 

move water from the hillslope layers to the channel. Flux from ponded storage on the surface to 

the channel (m/min) is: 

𝑞𝑝𝑐  =  𝑘2  ∙  𝑠𝑝 

Flux from ponded storage on the surface to the top layer (m/min) is: 

𝑞𝑝𝑡  =  𝑘𝑡𝑠𝑝 

𝑘𝑡  =  𝑘2 ( 𝐴 + 𝐵 ∙ (1 −  
𝑠𝑡

𝑆𝐿
)

𝛼

) 

𝑘2  =  𝑣ℎ  ∙  𝐿 𝐴ℎ⁄  ∙ 60 ∙  10−3 

Flux from the top layer to the subsurface (m/min) is:  

𝑞𝑡𝑠  =  𝑘𝑖𝑠𝑡 

𝑘𝑖  =  𝑘2𝛽 

Flux from the subsurface to the channel (m/min) is:  

𝑞𝑠𝑐  =  𝑘3𝑠𝑠 
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In addition, fluxes from evapotranspiration ep, et, and es move water from the hillslope to the 

atmosphere at a rate dependent on input potential evapotranspiration, epot. These are fluxes are 

detailed further in Small (2015). Figure 13 illustrates general hillslope-link processes.  

5.2.2 IFC Top Layer Model Parameters and States Description 

 Each hillslope-link unit is characterized by three parameters: channel length, L (km); 

hillslope area, Ah (km2); and total upstream drainage area, Aup (km2). All other parameters are 

lumped to represent the watershed globally, taking the same value at every hillslope-link unit. 

These global parameters are constant in time, describing channel reference velocity, 𝑣r (m/s); 

exponent of channel velocity discharge, λ1 (dimensionless); exponent of channel velocity area, λ2 

(dimensionless); constant velocity of water on the hillslope, 𝑣h (m/s); infiltration from subsurface 

into the channel, k3 (min-1); percentage of percolation from top layer to subsurface, β 

(dimensionless); total hillslope soil depth, hb (m); total topsoil depth, SL (m); surface to top layer 

Figure 13: Decomposition of a hillslope-link unit with n conceptual soil layers in which 

water flow is governed by ODEs (Della Libera Zanchetta, 2017).  
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infiltration, additive factor, A (dimensionless); surface to top layer infiltration, multiplicative 

factor, B (dimensionless); surface to top layer infiltration, exponent factor, α (dimensionless); 

and channel baseflow velocity, 𝑣B (dimensionless).  

The IFC Top Layer model models a set of seven states for all hillslope-link units for a 

time t. Each hillslope-link unit is characterized by the volume of water transported in the channel 

as discharge and baseflow, ponded on the surface of the hillslope, held in the pore space of the 

soil top layer and subsurface, fallen as cumulative precipitation, and generated as runoff by the 

hillslope-link system.  

5.3 Model Network Parameters Assignment & Topology Inputs 

I utilized Terrain Analysis Using Digital Elevation Models (TauDEM) software to extract 

river networks across the main island of Puerto Rico. TauDEM incorporates DEM analysis tools 

and functions developed by Dr. David Tarboton over the years with support from a variety of 

sponsors. All raw elevation inputs were provided by the SRTM 1 arc-second global digital 

elevation model, which has a spatial resolution of approximately 90 meters across the main 

island of Puerto Rico. The process described below was completed for each of the 75 watersheds 

upstream of USGS streamflow gages listed in Table 1. 

First, pits were removed from raw SRTM elevation grids to ensure hydraulic connectivity 

within each watershed. Pits are low elevation areas in DEMs that are completely surrounded by 

higher terrain. Pits are generally taken to be artifacts that interfere with the routing of flow across 

DEMs so they are removed by raising their elevation to the point where they drain off the edge 

of the domain (Jenson & Domingue, 1988).  Figure 14 shows the result of removing these pit 
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depressions on the SRTM-derived DEM for the watershed upstream of USGS 50035000, Río 

Grande de Manatí at Ciales. 

 

Flow directions were then assigned to DEM pixels to determine the paths of water. I used 

perhaps the simplest method for specifying flow directions by assigning flow from each pixel to 

one of its eight neighbors, either adjacent or diagonal, in the direction with steepest downward 

slope. This method is designated “D8” as flow can only be directed in eight directions 

(O’Callaghan & Mark, 1989). The D8 flow direction method has been used extensively to derive 

a wealth of information about the morphology of the land surface (Jenson, 1991; Tarboton, Bras, 

& Rodriguez-Iturbe, 1991). The D8 method produces good results in high gradient slops but it 

tends to produce flow in parallel lines along low steep areas (Hosseinzadeh, 2011). To increase 

performance in flat areas, flow directions were assigned away from higher ground and towards 

Figure 14: Pit-filled SRTM-derived DEM of the Río Grande de Manatí at Ciales watershed. 



www.manaraa.com

52  

 

lower ground using the method of Garbrecht and Martz (Garbrecht & Martz, 1997). Figure 15 

shows the D8 flow direction for the Río Grande de Manatí at Ciales watershed. 

 

The contributing area of terrain upslope of each grid cell was calculated by counting the 

number of upslope cells draining through it based on the D8 flow directions, resulting in an 

accumulation raster. Finally, the stream network was derived from this accumulation raster based 

on a defined threshold accumulation value. A low threshold accumulation value results in a very 

dense stream network because a link is defined everywhere that just a few pixels drain together. 

A high threshold accumulation value results in a coarse stream network because links are only 

defined where many pixels drain together. Due to the SRTM DEM’s coarse 90-meter resolution, 

a low threshold value was chosen, resulting in HLM models with a similar amount of sub-basins 

when compared to USGS stream networks defined across Puerto Rico. Figure 16 shows the 

HLM for the Río Grande de Manatí at Ciales watershed. 

Figure 15: D8 flow direction grid of the Río Grande de Manatí at Ciales watershed. 
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After the stream network was derived, each hillslope-link was assigned a unique value, 

associated with a flow direction, and ordered according to the Strahler ordering system. Cells 

that do not have any other grid cells draining in to them are Strahler order 1.  When two or more 

flow paths of different order join, the Strahler order of the downstream flow path is the Strahler 

order of the highest incoming flow path.  When two or more flow paths of equal order join, the 

downstream flow path is increased by one (Strahler, 1957). This is illustrated for the Río Grande 

de Manatí at Ciales watershed in Figure 16. 

  

Hillslope-link models like the one shown in Figure 16 are used to create stream network 

topology and network parameter files. The Iowa Flood Center Top Layer model is structured 

around the topology and network parameters defined by each HLM. Topology decomposes a 

natural stream network into a directed-tree data structure. Directed edges follow channel links in 

Figure 16: Hillslope-link model of the Río Grande de Manatí at Ciales watershed. Links 

weighted according to Strahler order. 
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the flow direction, and tree-nodes are placed where two links meet. Network parameters describe 

each directed edge according to its channel length, hillslope area, and total upstream drainage 

area. Node connections describe how sub-basins are nested within the watershed. Figure 17 is a 

schematic of a sample surface drainage network decomposed into its tree topology. Figure 18 

shows the processes occurring within each hillslope-link unit that routes water from hillslope 

storage to link transport downstream.   

Figure 17: Landscape decomposition into hillslopes and channel links. Colored areas drain to the 

respective links (Krajewski et al., 2017). 

Figure 18: Hillslope-based water flux and storage accounting schematic (Krajewski et al., 2017). 
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5.4 Model Rainfall Inputs 

IMERG Late Run data was processed to produce all rainfall inputs for this study. Ground 

observations from raingages or weather radar were not used to correct or calibrate IMERG Late 

Run rainfall estimates. Rainfall accumulation values were assigned using nearest neighbor 

sampling for those hillslopes that wholly fall within the footprint of a single IMERG pixel. Area-

averaged values were assigned to those hillslopes split by the division between two or more 

IMERG pixels. Figure 19 shows a sample of IMERG Late Run rainfall data over the watershed 

upstream of USGS 50035000, Río Grande de Manatí at Ciales. Table 6 shows basin average 

monthly accumulations of rainfall as estimated by IMERG Late Run within each modelled 

watershed, comparing annual sums to the NOAA climate normals.  

 

Figure 19: IMERG Late Run rainfall estimates from 12:00 PM to 12:30 PM on August 1, 

2014 over the Río Grande de Manatí at Ciales watershed with stream links weighted 

according to Strahler order. 



www.manaraa.com

56  

 

Table 6: Average monthly precipitation accumulations within 75 modelled watersheds in Puerto Rico estimated by IMERG Late Run 

[Study Index, numerical identifier of each gage, created for this study; USGS Streamgage, numerical identifier for USGS each 

streamgage station located at basin outlet; Site Name, abbreviated name describing USGS streamgage station; GPM Precipitation Rate 

Estimates, basin-averaged monthly accumulations of IMERG Late Run rainfall estimates; MAR, mean annual rainfall interpolated 

from NOAA 30-year climate normals and averaged to each basin; Difference, percent difference between annual sum of basin-

averaged rainfall accumulations estimated by IMERG Late Run and NOAA precipitation climate normals (negative values indicate 

that IMERG Late Run underestimates rainfall, while positive values indicate that IMERG Late Run overestimates rainfall)] 

Index  
USGS 

Streamgage 
Site Name 

GPM Precipitation Accumulation Estimates (mm) MAR 
(mm) 

Difference 
(%) 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Total 

1 50010500 Río Guajataca at Lares 99 94 104 107 113 105 112 107 100 106 104 100 1250 1917 -42.2 

4 50011200 Río Guajataca below Lago… 95 90 100 103 113 106 112 108 101 106 100 97 1232 1920 -43.7 

5 50014800 Río Camuy near Bayaney 103 100 114 114 120 110 119 113 106 110 106 103 1317 1954 -38.9 

6 50021700 Río Grande de Arecibo above… 116 115 129 130 136 121 127 121 112 114 113 110 1445 1911 -27.8 

8 50024950 Río Grande de Arecibo below… 116 114 131 131 138 122 128 121 113 115 114 110 1453 1939 -28.6 

9 50025155 Río Saliente at Coabey near… 115 114 138 135 140 126 130 121 112 113 111 105 1460 2240 -42.2 

10 50026025 Río Caonillas at Paso Palma 112 109 127 126 135 121 125 118 112 113 111 106 1416 2088 -38.4 

12 50027000 Río Limon above Lago Dos Bocas 120 122 143 141 147 129 132 123 115 118 115 111 1515 2001 -27.7 

13 50028000 Río Tanama near Utuado 111 108 123 125 130 116 123 118 110 114 112 107 1399 1949 -32.9 

14 50028400 Río Tanama at Charco Hondo 109 109 128 129 133 119 126 119 111 112 107 105 1405 2030 -36.4 

15 50029000 Río Grande de Arecibo at… 112 111 130 129 136 121 126 120 112 114 111 107 1428 1997 -33.2 

16 50031200 Río Grande de Manatí near… 94 88 97 100 109 104 109 108 104 106 100 97 1215 1885 -43.2 

19 50034000 Río Gauta near Orocovis 104 100 115 115 122 114 117 113 105 106 106 104 1321 1985 -40.2 

20 50035000 Río Grande de Manatí at Ciales 101 97 111 112 119 111 116 112 106 108 104 102 1299 1973 -41.2 

21 50038100 Río Grande de Manatí at… 114 116 136 134 143 126 128 120 113 118 113 109 1471 1733 -16.4 

23 50038320 Río Cibuco below Corozal 107 102 110 117 128 114 120 117 115 119 111 109 1369 1927 -33.8 

24 50039500 Río Cibuco at Vega Baja 106 101 115 116 127 115 121 117 112 115 108 106 1360 1876 -31.9 

25 50039995 Río Carité at spillway 110 113 132 131 133 120 126 125 117 116 112 108 1444 1745 -18.9 

26 50043000 Río de la Plata at Proyecto La… 103 100 110 113 120 113 121 122 114 116 110 106 1348 1667 -21.1 

27 50043197 Río Usabón at Highway 162… 86 76 80 85 96 93 102 105 97 104 98 95 1115 1639 -38.1 

28 50043800 Río de la Plata at Comerio 97 94 101 104 113 108 115 116 109 113 106 102 1278 1659 -25.9 
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Table 6  ̶  Continued 

Index  
USGS 

Streamgage 
Site Name 

GPM Precipitation Accumulation Estimates (mm) MAR 
(mm) 

Difference 
(%) 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Total 

29 50044810 Río Guadiana near Guadiana 105 106 114 115 127 118 123 121 116 118 114 109 1386 1834 -27.8 

30 50045010 Río de la Plata below La Plata… 100 96 104 107 116 109 118 118 111 114 107 104 1304 1695 -26.1 

31 50046000 Río de la Plata at Highway 2… 101 97 106 108 118 110 118 118 111 114 107 104 1312 1711 -26.4 

32 50047535 Río de Bayamón at Arenas 99 99 110 115 120 109 122 125 118 116 103 101 1338 1674 -22.3 

34 50047560 Río de Bayamón below Lago de… 90 85 92 94 107 99 110 113 106 107 98 97 1199 1671 -32.8 

35 50047850 Río de Bayamón near Bayamón 105 103 113 117 128 116 125 125 117 119 111 109 1388 1735 -22.2 

36 50049100 Río Piedras at Hato Rey 93 85 86 92 105 101 107 110 104 105 97 96 1180 1781 -40.6 

38 50050900 Río Grande de Loíza at… 101 103 109 112 121 111 120 121 112 119 113 107 1348 2023 -40.1 

39 50051310 Río Cayaguas at Cerro Gordo 98 95 103 113 117 112 125 127 120 125 117 107 1360 2245 -49.1 

40 50051800 Río Grande de Loíza at Highway… 97 93 102 107 115 110 119 121 114 118 111 103 1309 2154 -48.8 

41 50053025 Río Turabo above Borinquen 99 94 103 106 115 105 112 114 108 109 100 98 1264 1867 -38.5 

42 50055000 Río Grande de Loíza at Caguas 96 91 96 101 112 105 116 118 112 115 107 103 1272 1995 -44.3 

43 50055225 Río Caguitas at Villa Blanca at… 95 94 100 102 114 106 114 112 104 108 104 102 1255 1763 -33.7 

44 50055380 Río Bairoa bove Abiroa, Caguas 94 91 101 103 113 106 115 111 103 106 100 98 1241 1770 -35.1 

45 50055750 Río Gurabo below El Mango 100 98 110 113 124 116 129 128 118 116 110 107 1371 2100 -42.0 

46 50056400 Río Valenciano near Juncos 93 87 95 101 111 105 115 115 110 110 106 102 1250 2030 -47.6 

47 50057000 Río Gurabo at Gurabo 95 90 97 102 114 108 120 120 112 112 107 104 1279 1975 -42.7 

48 50058350 Río Canas at Río Canas 94 87 91 96 109 101 112 114 105 109 103 104 1224 1774 -36.7 

49 50059050 Río Grande de Loíza below… 98 94 101 106 117 109 119 120 112 113 108 104 1302 1920 -38.4 

50 50059210 Quebrada Grande at Barrio Dos… 104 102 108 117 128 117 124 123 117 121 115 111 1387 1791 -25.4 

51 50061800 Río Canovanas near Campo Rico 114 118 138 139 145 130 139 133 121 120 116 111 1523 2007 -27.5 

52 50063800 Río Espíritu Santo near Río… 107 105 131 134 139 122 132 128 117 115 107 105 1442 2133 -38.6 

53 50064200 Río Grande near El Verde 108 110 126 130 132 121 134 133 122 120 115 109 1459 2117 -36.8 

54 50065500 Río Mameyes near Sabana 100 96 116 122 130 118 123 121 112 112 103 100 1352 2273 -50.8 

55 50067000 Río Sabana at Sabana 103 101 116 120 130 118 123 122 113 110 102 99 1356 2209 -47.8 

56 50070900 Río Fajardo at Paraíso near… 101 99 113 116 126 118 124 124 113 111 106 103 1352 2378 -55.0 

57 50071000 Río Fajardo near Fajardo 99 97 110 114 125 116 122 122 111 110 104 102 1333 2325 -54.2 

58 50075000 Río Icacos near Naguabo 88 80 108 112 113 105 113 116 105 102 100 91 1235 2406 -64.4 
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Table 6  ̶  Continued 

Index  
USGS 

Streamgage 
Site Name 

GPM Precipitation Accumulation Estimates (mm) MAR 
(mm) 

Difference 
(%) 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Total 

60 50081000 Río Humacao at Las Piedras 97 92 102 111 110 108 123 126 118 119 114 107 1327 2098 -45.0 

61 50083500 Río Guayanés near Yabucoa 102 98 113 122 131 119 127 126 117 117 111 107 1389 1983 -35.2 

62 50085100 Río Guayanés at Central Roig 106 105 107 113 130 124 133 138 130 127 120 117 1449 2083 -35.9 

63 50090500 Río Maunabo at Lizas 105 106 129 129 135 121 129 126 115 116 112 107 1431 1891 -27.7 

64 50092000 Río Grande de Patillas near… 110 113 128 127 134 125 132 129 119 121 118 117 1473 1744 -16.8 

65 50093000 Río Marín near Patillas 114 115 136 137 144 127 132 126 116 118 113 112 1489 1809 -19.4 

67 50093120 Río Grande de Patillas below… 110 111 127 127 134 123 130 127 118 120 117 115 1460 1744 -17.8 

70 50100200 Río Lapa near Rabo del Buey 91 82 81 90 107 108 112 115 109 115 110 104 1223 1558 -24.0 

71 50100450 Río Majada at la Plena 107 102 107 114 131 124 131 129 121 123 119 116 1423 1716 -18.7 

72 50106100 Río Coamo at Highway 14… 92 81 81 93 111 106 108 108 105 111 108 103 1208 1576 -26.4 

74 50110650 Río Jacaguas above Lago… 92 78 84 92 104 103 108 106 99 102 101 98 1169 1943 -49.8 

75 50110900 Río Toa Vaca above Lago… 100 91 95 101 115 109 114 111 106 111 112 107 1271 1845 -36.9 

78 50111500 Río Jacaguas at Juana Díaz 92 80 85 92 105 102 106 105 100 105 103 99 1176 1726 -37.9 

79 50112500 Río Inabón at Real Abajo 117 114 128 132 133 122 127 121 112 111 114 115 1445 2114 -37.6 

80 50113800 Río Cerrillos above Lago… 120 120 138 140 143 126 132 125 114 115 115 113 1501 1924 -24.7 

82 50114000 Río Cerrillos below Lago… 119 119 135 138 141 126 131 124 114 115 116 114 1493 1877 -22.8 

83 50114900 Río Portugues near Tibes 120 118 134 137 143 126 131 123 114 115 116 115 1492 1750 -15.9 

84 50115240 Río Portugues at Parque... 116 109 118 124 133 120 124 117 109 112 114 111 1407 1693 -18.4 

85 50124200 Río Guayanilla near Guayanilla 99 86 90 102 114 105 109 107 104 109 109 103 1236 1528 -21.1 

86 50126150 Río Yauco above Diversión… 110 104 115 122 132 117 122 116 109 112 113 110 1383 1500 -8.1 

87 50129254 Río Loco at Las Latas near La… 91 77 80 97 110 106 108 108 106 112 103 99 1195 1322 -10.1 

88 50136400 Río Rosario near Hormigueros 122 125 147 145 152 134 137 131 121 123 121 117 1575 1984 -23.0 

89 50138000 Río Guanajibo near Hormigueros 98 92 100 109 122 112 117 116 109 114 108 102 1299 1710 -27.3 

90 50144000 Río Grande de Añasco near San… 119 119 137 139 143 127 133 125 116 119 118 114 1509 1888 -22.3 

92 50147800 Río Culebrinas at Highway 404… 90 83 92 99 109 105 112 108 101 104 98 94 1196 1811 -40.9 

93 50148890 Río Culebrinas at Margarita… 87 80 88 94 105 102 109 106 100 102 96 91 1160 1797 -43.1 
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5.5 Model Evapotranspiration Inputs 

Between 2000 and 2014, approximately 700 MOD16A2 near global datasets were 

released. They provide estimates of ET at 0.5-km spatial resolution every 8 days. I processed 

these 8-day datasets into a spatially distributed set of monthly ET rates for each of the 180 

months spanning January 2000 to December 2014. Figure 20 shows the result of this processing 

for August 2014 over the Río Grande de Manatí at Ciales watershed. I then calculated the 

average over each modelled watershed to assign one monthly value representing the ET rate for 

each month. Lastly, each monthly rate of ET was compared to others of the same month but 

different years. I calculated a final representative rate of monthly ET in each watershed from the 

15 values for January, then repeated the process for the remaining 11 months. A summary of 

monthly ET rates for each watershed is shown in Table 7. 

Figure 20: Average evapotranspiration rate during August 2014 within Río Grande de 

Manatí at Ciales watershed with rates estimated by the MOD16A2 algorithm and stream 

links weighted according to Strahler order. 
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Table 7: Average monthly evapotranspiration rates over 75 modelled watersheds in Puerto Rico estimated by MOD16A2. 

[Study Index, numerical identifier of each gage, created for this study; USGS Streamgage, numerical identifier for USGS each 

streamgage station located at basin outlet; Site Name, name describing USGS streamgage station; MODIS Evapotranspiration Rate 

Estimates, average ET for each month of the year calculated from MOD16A2 algorithm estimates] 

Index  
USGS 

Streamgage 
Site Name 

MODIS Evapotranspiration Rate Estimates (mm/month) 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

1 50010500 Río Guajataca at Lares 99 94 104 107 113 105 112 107 100 106 104 100 

4 50011200 Río Guajataca below Lago Guajataca 95 90 100 103 113 106 112 108 101 106 100 97 

5 50014800 Río Camuy near Bayaney 103 100 114 114 120 110 119 113 106 110 106 103 

6 50021700 Río Grande de Arecibo above Utuado 116 115 129 130 136 121 127 121 112 114 113 110 

8 50024950 Río Grande de Arecibo below Utuado 116 114 131 131 138 122 128 121 113 115 114 110 

9 50025155 Río Saliente at Coabey near Jayuyu 115 114 138 135 140 126 130 121 112 113 111 105 

10 50026025 Río Caonillas at Paso Palma 112 109 127 126 135 121 125 118 112 113 111 106 

12 50027000 Río Limon above Lago Dos Bocas 120 122 143 141 147 129 132 123 115 118 115 111 

13 50028000 Río Tanama near Utuado 111 108 123 125 130 116 123 118 110 114 112 107 

14 50028400 Río Tanama at Charco Hondo 109 109 128 129 133 119 126 119 111 112 107 105 

15 50029000 Río Grande de Arecibo at Central Cambalache 112 111 130 129 136 121 126 120 112 114 111 107 

16 50031200 Río Grande de Manatí near Morovis 94 88 97 100 109 104 109 108 104 106 100 97 

19 50034000 Río Gauta near Orocovis 104 100 115 115 122 114 117 113 105 106 106 104 

20 50035000 Río Grande de Manatí at Ciales 101 97 111 112 119 111 116 112 106 108 104 102 

21 50038100 Río Grande de Manatí at Highway 2 near Manatí 114 116 136 134 143 126 128 120 113 118 113 109 

23 50038320 Río Cibuco below Corozal 107 102 110 117 128 114 120 117 115 119 111 109 

24 50039500 Río Cibuco at Vega Baja 106 101 115 116 127 115 121 117 112 115 108 106 

25 50039995 Río Carité at spillway 110 113 132 131 133 120 126 125 117 116 112 108 

26 50043000 Río de la Plata at Proyecto La Plata 103 100 110 113 120 113 121 122 114 116 110 106 

27 50043197 Río Usabón at Highway 162 near Barranquitas 86 76 80 85 96 93 102 105 97 104 98 95 

28 50043800 Río de la Plata at Comerio 97 94 101 104 113 108 115 116 109 113 106 102 

29 50044810 Río Guadiana near Guadiana 105 106 114 115 127 118 123 121 116 118 114 109 

30 50045010 Río de la Plata below La Plata damsite 100 96 104 107 116 109 118 118 111 114 107 104 

31 50046000 Río de la Plata at Highway 2 near Toa Alta 101 97 106 108 118 110 118 118 111 114 107 104 
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Table 7  ̶  Continued 

Index  
USGS 

Streamgage 
Site Name 

MODIS Evapotranspiration Rate Estimates (mm/month) 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

32 50047535 Río de Bayamón at Arenas 99 99 110 115 120 109 122 125 118 116 103 101 

34 50047560 Río de Bayamón below Lago de Cidra Dam 90 85 92 94 107 99 110 113 106 107 98 97 

35 50047850 Río de Bayamón near Bayamón 105 103 113 117 128 116 125 125 117 119 111 109 

36 50049100 Río Piedras at Hato Rey 93 85 86 92 105 101 107 110 104 105 97 96 

38 50050900 Río Grande de Loíza at Quebrada Arenas 101 103 109 112 121 111 120 121 112 119 113 107 

39 50051310 Río Cayaguas at Cerro Gordo 98 95 103 113 117 112 125 127 120 125 117 107 

40 50051800 Río Grande de Loíza at Highway 183 San Lorenzo 97 93 102 107 115 110 119 121 114 118 111 103 

41 50053025 Río Turabo above Borinquen 99 94 103 106 115 105 112 114 108 109 100 98 

42 50055000 Río Grande de Loíza at Caguas 96 91 96 101 112 105 116 118 112 115 107 103 

43 50055225 Río Caguitas at Villa Blanca at Caguas 95 94 100 102 114 106 114 112 104 108 104 102 

44 50055380 Río Bairoa bove Abiroa, Caguas 94 91 101 103 113 106 115 111 103 106 100 98 

45 50055750 Río Gurabo below El Mango 100 98 110 113 124 116 129 128 118 116 110 107 

46 50056400 Río Valenciano near Juncos 93 87 95 101 111 105 115 115 110 110 106 102 

47 50057000 Río Gurabo at Gurabo 95 90 97 102 114 108 120 120 112 112 107 104 

48 50058350 Río Canas at Río Canas 94 87 91 96 109 101 112 114 105 109 103 104 

49 50059050 Río Grande de Loíza below Loíza damsite 98 94 101 106 117 109 119 120 112 113 108 104 

50 50059210 Quebrada Grande at Barrio Dos Bocas 104 102 108 117 128 117 124 123 117 121 115 111 

51 50061800 Río Canovanas near Campo Rico 114 118 138 139 145 130 139 133 121 120 116 111 

52 50063800 Río Espíritu Santo near Río Grande 107 105 131 134 139 122 132 128 117 115 107 105 

53 50064200 Río Grande near El Verde 108 110 126 130 132 121 134 133 122 120 115 109 

54 50065500 Río Mameyes near Sabana 100 96 116 122 130 118 123 121 112 112 103 100 

55 50067000 Río Sabana at Sabana 103 101 116 120 130 118 123 122 113 110 102 99 

56 50070900 Río Fajardo at Paraíso near Fajardo 101 99 113 116 126 118 124 124 113 111 106 103 

57 50071000 Río Fajardo near Fajardo 99 97 110 114 125 116 122 122 111 110 104 102 

58 50075000 Río Icacos near Naguabo 88 80 108 112 113 105 113 116 105 102 100 91 

60 50081000 Río Humacao at Las Piedras 97 92 102 111 110 108 123 126 118 119 114 107 

61 50083500 Río Guayanés near Yabucoa 102 98 113 122 131 119 127 126 117 117 111 107 

62 50085100 Río Guayanés at Central Roig 106 105 107 113 130 124 133 138 130 127 120 117 
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Table 7  ̶  Continued 

Index  
USGS 

Streamgage 
Site Name 

MODIS Evapotranspiration Rate Estimates (mm/month) 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

63 50090500 Río Maunabo at Lizas 105 106 129 129 135 121 129 126 115 116 112 107 

64 50092000 Río Grande de Patillas near Patillas 110 113 128 127 134 125 132 129 119 121 118 117 

65 50093000 Río Marín near Patillas 114 115 136 137 144 127 132 126 116 118 113 112 

67 50093120 Río Grande de Patillas below Lago Patillas 110 111 127 127 134 123 130 127 118 120 117 115 

70 50100200 Río Lapa near Rabo del Buey 91 82 81 90 107 108 112 115 109 115 110 104 

71 50100450 Río Majada at la Plena 107 102 107 114 131 124 131 129 121 123 119 116 

72 50106100 Río Coamo at Highway 14 at Coamo 92 81 81 93 111 106 108 108 105 111 108 103 

74 50110650 Río Jacaguas above Lago Guayabal 92 78 84 92 104 103 108 106 99 102 101 98 

75 50110900 Río Toa Vaca above Lago Toa Vaca 100 91 95 101 115 109 114 111 106 111 112 107 

78 50111500 Río Jacaguas at Juana Díaz 92 80 85 92 105 102 106 105 100 105 103 99 

79 50112500 Río Inabón at Real Abajo 117 114 128 132 133 122 127 121 112 111 114 115 

80 50113800 Río Cerrillos above Lago Cerrillos near Ponce 120 120 138 140 143 126 132 125 114 115 115 113 

82 50114000 Río Cerrillos below Lago Cerrillos near Ponce 119 119 135 138 141 126 131 124 114 115 116 114 

83 50114900 Río Portugues near Tibes 120 118 134 137 143 126 131 123 114 115 116 115 

84 50115240 Río Portugues at Parque Ceremonial Tibes 116 109 118 124 133 120 124 117 109 112 114 111 

85 50124200 Río Guayanilla near Guayanilla 99 86 90 102 114 105 109 107 104 109 109 103 

86 50126150 Río Yauco above Diversión Monserrate near Yauco 110 104 115 122 132 117 122 116 109 112 113 110 

87 50129254 Río Loco at Las Latas near La Joya near Guanica 91 77 80 97 110 106 108 108 106 112 103 99 

88 50136400 Río Rosario near Hormigueros 122 125 147 145 152 134 137 131 121 123 121 117 

89 50138000 Río Guanajibo near Hormigueros 98 92 100 109 122 112 117 116 109 114 108 102 

90 50144000 Río Grande de Añasco near San Sebastián 119 119 137 139 143 127 133 125 116 119 118 114 

92 50147800 Río Culebrinas at Highway 404 near Moca 90 83 92 99 109 105 112 108 101 104 98 94 

93 50148890 Río Culebrinas at Margarita damsite near Aguada 87 80 88 94 105 102 109 106 100 102 96 91 

 

 

 



www.manaraa.com

63  

 

This process was also completed to find a representative monthly time series of ET rate 

over the entire main island of Puerto Rico. Figure 21 shows how these island-wide average ET 

rates vary month-to-month over 15 years. A statistical summary of average monthly ET rates is 

presented in Table 8.  

 

Evapotranspiration is included in the IFC Top Layer model as daily (mm/day) or monthly 

(mm/month) ET rates within forcing files. The model calculates equivalent rates at specified time 

step increments (mm/ 5 min) from input tables of ET rate. Monthly average ET rates do not vary 

year-to-year unless the ET forcing files are manually changed to do so.  
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Figure 21: Spatially averaged monthly evapotranspiration rates on the main island of Puerto 

Rico estimated by MOD16A2, from 2000 to 2014. Mean values are shown in black. 



www.manaraa.com

64  

 

Table 8: Statistical summary of spatially averaged monthly evapotranspiration rates on the main 

island of Puerto Rico, from 2000 to 2014. 

                                           
Month 

                
Minimum 

              
Maximum 

                
Median 

                     
Mean 

Standard 
Deviation 

January (mm/month) 89.7 107.0 97.8 98.0 5.5 

February (mm/month) 85.8 98.4 90.4 91.9 3.8 

March (mm/month) 96.0 115.8 102.7 104.4 5.6 

April (mm/month) 96.3 118.4 107.4 109.2 5.9 

May (mm/month) 105.7 126.7 118.4 116.3 6.1 

June (mm/month) 101.0 119.4 108.4 109.6 5.8 

July (mm/month) 110.4 125.3 117.5 117.1 4.0 

August (mm/month) 108.2 129.8 116.2 117.4 6.0 

September (mm/month) 102.2 119.6 108.9 109.4 5.1 

October (mm/month) 100.6 127.1 109.5 112.3 8.2 

November (mm/month) 95.6 114.4 107.8 107.1 4.7 

December (mm/month) 95.1 107.8 102.8 102.5 4.2 

 

5.6 Model Global Parameters Assignment 

 Each modelled watershed is assigned a set of global parameters that influence the 

calculation of water transport processes the same way in all hillslope-link units. I analyzed the 

basin characteristics and local data summarized in Chapter 3.3 to create an island-wide model for 

Puerto Rico. Although each watershed could be calibrated to fit observations month-to-month, 

the performance of this island-wide model provides insight into how ungauged basins developing 

communities could benefit from satellite-driven hydrologic models. As such, the set of global 

parameters described here represents a best guess approximation of watershed behavior across 

the island, rather than a set of 75 watershed-scale calibrations of the IFC Top Layer model. 

 Using the entire record of USGS in-situ streamflow measurements, I explored the 

relationship of water flow velocity to discharge and drainage area across river networks in Puerto 

Rico. This relationship may be organized as a power law model that describes the river flow 
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velocity across the network with increasing discharge and drainage area, the context of which 

forms the basis for many routing models, including the IFC Top Layer model (Ayalew, 

Krajewski, & Mantilla, 2014; Ghimire, Krajewski, & Mantilla, 2018). It has the form:  

𝑣𝑐 = 𝑣𝑟𝑄𝜆1𝐴𝜆2 

where vc is the channel velocity and Q is the corresponding flowrate for a given watershed of 

drainage area, A. In addition, vr is the channel reference velocity, λ1 is the exponent of channel 

velocity discharge, and λ2 is the exponent of channel velocity area, which directly correspond to 

IFC Top Layer model global parameters.   

I used 1604 measurements of the mean cross-sectional velocity and the concurrent 

discharge for basins of variable drainage area to estimate these three parameters. Figure 22 

shows the ensemble of all state-wide velocity and discharge data used to fit the power law model 

to Puerto Rico streamflow conditions. In addition, power law fits are shown for six drainage 

areas ranging from 10 km2 to 500km2. The results of this island-wide power law model fit show 

that appropriate values for channel velocity discharge, exponent of channel velocity discharge, 

and the exponent of channel velocity area are 0.509 m/s, 0.316, and -0.090, respectively. The 

model explains about 53% of the variability in stream velocities (R2 = 0.53), with a root-mean-

square error (RMSE) value of 0.19 m/s. 

I chose to increase the channel velocity discharge because many data points were 

recorded in coastal lowlands, where river gradients and average flow velocities are low.  The 

chosen island-wide streamflow velocity power law model is: 

𝑣𝑐 = 0.710𝑄0.316𝐴−0.090 

By increasing channel velocity above the calculated power law model fit, streamflow will be 

better simulated in the interior mountain region that is most affected by floods. 
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Figure 22: Island-wide power law river velocity model, where (a) corresponds to the model with drainage area 10 km2 

and (b) corresponds to the drainage area of 500 km2, and the intermediate lines correspond to the drainage areas of 25, 

50, 100, and 250 km2, respectively, from (a) to (b). 

(b) (a) 
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The remaining global parameters were assigned the following values for all 75 modelled 

watersheds in Puerto Rico: 

𝑣h  = 0.15  m/s 

k3  = 8.00e-7  min-1 

β = 3.00 % 

hb  = 0.1·DR  m 

SL  = DR m 

A  = 0.00 (dimensionless) 

B  = 99.00 (dimensionless) 

α  = 3.00 (dimensionless) 

𝑣B  = 1.00  m/s 

where DR is the basin average maximum depth of soil, summarized in Table 1.  

5.7 Model Operation 

5.7.1 Initial Conditions and Time Scale 

To minimize the influence of initial conditions on long term model performance, I 

decided to operate the IFC Top Layer model continuously for the 75 modelled basins in Puerto 

Rico from March 2014 to December 2018. Representative initial conditions were chosen once 

for each basin at the start of model runs. USGS procedures were followed to establish mean 

monthly streamflow rates normalized to drainage area. Over 640,000 values of daily mean 

streamflow from USGS historical records spanning October 1, 1985 to December 31, 2018 of 

were analyzed. This pool of data was gathered only from streamgages corresponding to the 75 
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modelled watersheds. Values of mean daily streamflow per unit area were averaged based on the 

month in which they fall, resulting in the values shown in Table 9.  

Table 9: Mean monthly streamflow per unit area 

                 
Month 

                    
Mean 

Standard 
Deviation 

                  
Count   

January [m3/s]/km2 0.79 1.73 55358 

February [m3/s]/km2 0.57 1.05 50512 

March [m3/s]/km2 0.56 1.41 53832 

April [m3/s]/km2 0.81 2.20 52075 

May [m3/s]/km2 1.27 2.70 53928 

June [m3/s]/km2 0.94 1.75 52325 

July [m3/s]/km2 0.93 1.88 54101 

August [m3/s]/km2 1.23 3.13 54143 

September [m3/s]/km2 2.21 12.41 52392 

October [m3/s]/km2 1.78 4.38 55280 

November [m3/s]/km2 1.72 3.51 53489 

December [m3/s]/km2 1.07 2.26 55349 

 

 The March value was substituted for streamflow initial conditions at the beginning of 

each model run with corresponding baseflow values equal to 75% of average flow, a portioning 

consistent with studies of watersheds in the interior mountain region (Rodríquez-Martínez & 

Santiago, 2016). Because storms do not follow a calendar, runs were not terminated until at least 

24 hours after the last observation of rain by IMERG Late Run within each watershed, allowing 

for the full hydrologic response to be simulated and compared to streamgage observations.  

5.7.2 Numerical Solver & Computational Resources 

 Mathematically, the IFC Top Layer model is a system of ordinary differential equations 

organized according to network topology, as described in Chapter 5.2. Processes within each 

hillslope unit are calculated independently because there is no “communication” between 

hillslopes, only between hillslopes and their nearby link. Calculations for the model are 
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performed using the asynchronous (ASYNCH) software package developed by the IFC. 

ASYNCH is a parallel solver for systems of differential equations interconnected in a tree 

structure (Small et al., 2012). The model applies continuous-output Runge-Kutta methods to the 

equations at each hillslope, allowing for asynchronous time stepping. ASYNCH is implemented 

in C programming language and uses Message Passing Interface (MPI) to support its parallel 

computing architecture. ASYNCH is capable of running on personal computers, though its full 

potential is reached when executed on Argon, the University of Iowa’s High Performance 

Computing (HPC) cluster. I relied on these computational resources to efficiently simulate 

streamflow for 2,584 hillslope-link units for approximately 500,000 time steps each.  

 ASYNCH’s primary input file is the “global file” that summarizes references for all 

others, including river network topology and HLM parameters (see Chapter 5.3), rainfall forcing 

(see Chapter 5.4), evapotranspiration forcing (see Chapter 5.5), and initial conditions (see 

Chapter 5.7.1). The global file specifies network-wide global parameters (see Chapter 5.6) in 

addition to specifications for the numerical solver including absolute and relative error 

tolerances. ASYNCH’s file/database-based Unix command line system allows for extraordinary 

flexibility (Della Libera Zanchetta, 2017). ASYCH does not provide tools for model analysis and 

post-processing. I wrote my own scripts to utilize HPC resources and evaluate model 

performance.    
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CHAPTER 6: MODEL EVALUATION AND CONCLUSIONS 

6.1 Introduction 

Model simulations spanning 58 months were evaluated for 54 of the 75 modelled 

watersheds. 21 watershed models were omitted because they are affected by large upstream 

control structures like dams and reservoirs or measure flow directly downstream of large urban 

areas. For example, the simulations of the watershed upstream of USGS 50093120 Río Grande 

de Patillas below Lago Patillas was not analyzed because flow is largely controlled by PREPA’s 

operation of the Patillas Dam. As discussed in Chapter 6.2, two primary statistical performance 

measures were selected to evaluate model performance: Nash-Sutcliffe efficiency (NSE) and 

Kling-Gupta efficiency (KGE), which are detailed in Chapter 6.2. Some critical sources of error 

influencing model performance are discussed in in Chapter 6.3, while model runs using raingage 

forcing are presented in Chapter 6.4 in order to help elucidate how model performance can be 

improved. 

6.2 Model Performance 

Nash-Sutcliffe efficiency is an alternative goodness-of-fit index to a standard correlation 

coefficient that can be calculated as: 

𝑁𝑆𝐸 = 1 − [
∑ (𝑋𝑖 − 𝑌𝑖)

2𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋)
2

𝑛
𝑖=1

] 

where Xi is the ith observation of streamflow, Yi is the ith simulated value of streamflow, and 𝑋 

is the mean of observed streamflow data, and n is the number of corresponding pairs of 

simulated and observed values. NSE can range from –∞ to 1, with values above zero indicating 

predictive performance better than the mean of observations. NSE has a variety of applications 
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including the calibration and verification of catchment model parameters, evaluation of storm 

event models, assessment of sediment transport models, and evaluation of state-wide flood 

models (Erpul, Norton, & Gabriels, 2003; Kalin, Govindaraju, & Hantush, 2003; Krajewski et 

al., 2017). In fact, the American Society of Civil Engineers (ASCE) Watershed Management 

Committee recommends the NSE for evaluation of continuous moisture accounting models 

(American Society of Civil Engineers, 1993). The use of the index for a wide variety of model 

types indicates its flexibility as a goodness-of-fit statistic (McCuen, Knight, & Cutter, 2006). 

Monthly mean and overall NSE values are shown in Table 10 and Figure 23, respectively.  

 Kling-Gupta Efficiency is a decomposition of NSE which facilitates the analysis of the 

relative importance of its different components in the context of hydrological modelling that can 

be calculated as: 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 

where r is the Pearson product-moment correlation coefficient, β is the ratio between the mean of 

simulated values of streamflow and the mean of streamflow observations, and γ is the ratio 

between the coefficient of variation (CV) of the simulated values of streamflow to the CV of 

streamflow observations. Monthly mean and overall KGE values are shown in Table 11 and 

Figure 24, respectively.  

The ideal value of the Pearson product-moment correlation coefficient, r = 1 and it may 

be calculated as: 

𝑟 =  
∑ ((𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌))𝑛

𝑖=1

√∑ (𝑋𝑖 − 𝑋)
2

𝑛
𝑖=1 ∑ (𝑌𝑖 − 𝑌)

2
𝑛
𝑖=1
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where Xi is the ith observation of streamflow, Yi is the ith simulated value of streamflow, and 𝑋 

is the mean of observed streamflow data, 𝑌 is the mean of simulated values of streamflow, and n 

is the number of corresponding pairs of simulated and observed values. This component 

indicates the correlation of observations and simulation of streamflow. Monthly mean and 

overall r values are shown in Table 12 and Figure 25, respectively.  

The ideal value of the ratio between the mean of simulated values of streamflow and the 

mean of streamflow observations, β = 1 and it may be calculated as: 

𝛽 =  
𝑌

𝑋
 

where 𝑋 is the mean of observed streamflow data and 𝑌 is the mean of simulated streamflow 

data. This component indicates bias between observations and simulation of streamflow. 

Monthly mean and overall β values are shown in Table 13 and Figure 26, respectively.  

 The ideal value of the ratio between the CV of simulated values of streamflow and the 

CV of observations of streamflow, γ = 1 and it may be calculated as: 

𝛾 =  

𝑆𝑌

𝑌
⁄

𝑆𝑋

𝑋
⁄

 

where 𝑋 is the mean of observed streamflow data, 𝑌 is the mean of simulated streamflow data, SX 

is the standard deviation of observed streamflow data, and SY is the standard deviation of 

simulated streamflow data. This component indicates the variability of observations and 

simulation of streamflow.   Monthly mean and overall KGE values are shown in Table 14 and 

Figure 27, respectively.  



www.manaraa.com

73  

 

Table 10: Monthly average Nash Sutcliffe Efficiency, NSE 

Index  
USGS 

Streamgage 

Nash Sutcliffe Efficiency, NSE 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

5 50014800 -5.3 -1.9 -18.0 -0.5 -0.6 -0.5 -5.7 -0.3 -0.1 -1.3 -1.3 -5.9 

9 50025155 -2.2 -0.7 -0.7 -0.4 -0.3 -2.4 -3.4 -0.1 -0.9 -0.4 -1.2 -8.1 

10 50026025 -3.1 -0.5 -30.1 -0.5 -0.1 -29.9 -16.1 0.1 -0.1 -0.1 -0.4 -10.7 

12 50027000 -0.7 0.0 -0.1 -0.3 -0.1 -51.2 -144.5 0.3 0.0 -0.1 -0.2 -4.4 

13 50028000 -1.4 -0.8 -0.3 -0.2 -0.3 -0.8 -4.1 -0.1 -0.4 -0.6 -0.4 -6.8 

14 50028400 -10.6 -14.0 -116.2 -0.9 -1.7 -5.2 -5.5 -1.8 -1.7 -1.8 -1.7 -31.0 

16 50031200 -6.5 -0.1 -38.3 -21.2 -0.3 -11.8 -470.7 -1.4 0.2 -20.2 0.2 -4.0 

19 50034000 -0.3 -1.6 -85.5 -0.5 0.1 -71.7 -436.3 0.0 -1.0 -0.1 -0.1 -1.4 

20 50035000 -0.9 -0.3 -5.3 -2.0 0.0 -184.9 -627.0 -0.5 0.0 0.0 -3.1 -2.1 

21 50038100 -13.9 -7.8 -207.2 -1.9 -9.5 -54.0 -52.3 -1.4 -2.1 -0.7 -0.7 -22.0 

24 50039500 -0.6 -56.2 -7.2 -3.6 -0.2 -3.8 -316.6 -0.6 -1.0 -0.1 -0.4 -0.4 

27 50043197 -3.4 -12.7 -339.8 -187.7 -21.4 -8805.0 -1468.4 -36.5 -0.4 -0.2 -47.0 -89.5 

28 50043800 -0.2 -2.0 -78.9 -49.8 -0.6 -285.2 -226.9 0.1 -3.7 0.0 0.2 -29.4 

29 50044810 -0.4 -6.4 -1.7 0.0 -0.1 -252.3 -880.1 -0.1 0.1 0.0 0.0 -1.1 

31 50046000 -1.8 -54.8 -54.6 -19.4 -4.2 -61.1 -122.9 -3.6 -8.3 -0.5 0.3 -2.2 

36 50049100 -0.3 -0.2 -0.9 0.0 -0.1 -0.7 -0.1 0.0 0.0 -0.1 0.0 -0.1 

38 50050900 -1.0 -1.5 -13.1 -0.1 -0.7 -0.3 -0.1 -0.1 -0.1 -0.1 0.0 -3.6 

39 50051310 -10.6 -26.1 -50.6 -1.1 -1.3 -4.7 -5.1 -0.1 -0.5 -11.1 -0.6 -19.0 

40 50051800 -2.0 -1.4 -7.0 -0.2 -4.4 -3.5 -3.1 -0.2 -0.2 -0.9 -0.2 -4.7 

41 50053025 -1.6 -2.0 -2.3 -0.4 -0.2 -0.7 -0.2 0.0 -0.1 -0.5 -0.1 -5.7 

42 50055000 -1.7 -1.2 -1.4 -0.2 -0.4 -15.6 -4.7 0.0 0.0 -0.1 0.0 -2.5 

43 50055225 -0.4 -0.7 -0.1 -0.1 0.0 -46.2 -0.7 0.0 0.0 -0.1 -0.1 -0.3 

44 50055380 -0.4 -0.4 -0.2 -5.0 -0.2 -18.4 -38.2 0.0 0.0 -1.3 0.0 -0.3 

45 50055750 -1.3 -0.8 -22.0 -25.9 -231.8 -312.8 -224.7 0.2 -1.2 -1.5 -0.3 0.0 

46 50056400 -1.3 -23.4 -1.0 -0.9 -6.6 -3.3 -32.2 0.1 0.0 -1.2 0.0 -2.4 

47 50057000 -0.5 -0.1 -22.1 -1.5 -2.8 -204.1 -171.7 0.2 0.0 0.1 -0.1 -0.3 

48 50058350 -0.4 -1.4 -4.4 -0.1 -0.1 -4.1 -7.4 -0.1 -0.1 -0.1 -0.1 -0.8 
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Table 10  ̶  Continued 

Index  
USGS 

Streamgage 

Nash Sutcliffe Efficiency, NSE 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

50 50059210 -2.2 -0.8 -2.1 -2.1 0.0 -272.0 -41.2 -1.1 0.0 -0.1 -0.1 -11.6 

51 50061800 -1.4 -3.2 -0.9 -1.2 0.0 -13.2 -172.1 0.1 -1.7 -0.5 -0.1 0.0 

52 50063800 -0.9 -1.2 -0.9 -0.6 -0.7 -0.5 -0.3 -0.2 -0.2 -0.4 -0.3 -0.7 

53 50064200 -0.6 -1.1 -0.5 -0.2 -0.2 -0.2 -0.1 -0.2 -0.1 -0.2 -0.2 -0.5 

54 50065500 -1.0 -1.0 -1.0 -0.4 -6.4 -0.7 -0.2 -0.2 -0.1 -0.2 -0.2 -0.3 

55 50067000 -1.0 -0.7 -0.1 0.0 -0.2 -2.6 -18.9 0.0 0.0 -0.1 -0.2 -0.1 

57 50071000 -0.5 -0.2 -0.9 -0.1 -0.1 0.0 -23.3 -0.1 0.0 0.0 -0.1 -0.1 

58 50075000 -2.3 -0.9 -5.2 -0.7 -0.8 -5.4 -0.6 -0.3 -0.4 -0.6 -0.5 -1.0 

60 50081000 -6.3 -8.7 -45.1 -1.2 -0.9 -13.5 -15.4 -0.1 -1.2 -19.0 0.0 -5.3 

61 50083500 -3.8 -7.0 -51.8 -1.1 -1.6 -1.2 -1.0 -0.1 -0.6 -0.1 -0.2 -5.6 

62 50085100 -5.9 -8.5 -58.3 -1.5 -260.0 -3.1 -1.2 -0.2 -0.8 -0.6 -0.2 -6.7 

63 50090500 -3.2 -7.3 -22.8 -0.6 -0.3 -2.4 -0.7 -0.2 -0.6 -0.1 -0.2 -2.0 

64 50092000 -2.0 -1.1 -58.8 -0.8 -0.2 -0.4 -0.6 0.0 -1.2 -0.3 -0.2 -8.2 

65 50093000 -6.0 -4.5 -90.3 -1.9 -0.7 -2.1 -0.7 -0.3 -0.7 -656.8 -0.4 -1.5 

72 50106100 -93.7 -180.0 -12790.5 -74.3 -495.6 -9111.1 -23552.6 -30.3 -0.2 0.0 -11.1 -88.8 

74 50110650 -3.9 -2.3 -1.7 -0.1 -0.2 -54.1 -4.6 -0.1 -0.1 -0.1 -1.4 -8.2 

75 50110900 -5.5 -429.1 -1689.8 -0.1 -1.1 -976.4 -187.5 -47.8 -2.2 0.0 -0.4 -232.0 

79 50112500 -0.2 -0.3 -0.2 -0.1 -0.2 -7.2 -3.2 -0.3 -1.4 -1.2 -1.9 -3.6 

80 50113800 -0.4 -0.3 -100.8 0.0 -0.1 0.0 -4.6 0.0 -0.2 -0.8 -0.9 -1.0 

83 50114900 -3.8 -1.0 -42.5 -2.2 -0.7 -92.5 -89.4 -4.6 0.0 -0.5 -0.8 -9.4 

84 50115240 0.0 -0.8 -33.3 -0.2 -0.1 -13.8 -24.1 -1.3 -0.4 -0.2 -0.4 -1.0 

85 50124200 -0.4 -1.0 -186.5 -0.9 -0.2 -499.8 -407.8 -1.5 -1.4 -1.9 -1.7 -7.6 

88 50136400 -24.0 -1.2 -2.9 -2.0 -25.1 -27.8 -136.0 -0.3 -0.2 -0.4 -2.3 -2.8 

89 50138000 -1.2 -2.5 -13.1 -0.1 -1.8 -6.2 -379.7 0.1 -0.3 -2.2 -1.5 -2.3 

90 50144000 -1.9 -0.3 -2.1 -0.4 -0.3 -3.4 -8.9 -0.1 -0.3 -0.8 -1.3 -5.8 

92 50147800 -0.3 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -9.8 0.1 -0.1 0.0 -0.2 

93 50148890 -0.1 -7.9 -59.9 -0.1 -0.2 -0.6 -12.7 -0.1 -0.2 -0.2 -0.1 -1.7 
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Figure 23: Overall NSE values at 54 basins across main island of Puerto Rico, numbered by Study Index. 
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Table 11: Monthly average Kling-Gupta Efficiency, KGE  

Index  
USGS 

Streamgage 

Kling-Gupta Efficiency, KGE 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

5 50014800 -0.2 -0.4 -0.4 -0.2 -0.1 0.0 -0.8 0.2 0.1 -0.2 -0.4 -0.3 

9 50025155 -0.3 -0.3 -0.3 -0.2 -0.2 -0.2 -0.6 0.0 -0.1 -0.2 -0.1 -0.1 

10 50026025 -0.3 -0.2 -0.1 0.0 -0.1 -1.0 -1.1 0.2 0.1 -0.1 0.1 -0.3 

12 50027000 -0.2 -0.2 -0.1 0.0 -0.1 -1.2 -1.6 0.4 0.1 0.1 0.0 -0.4 

13 50028000 -0.2 -0.3 -0.3 -0.3 -0.2 0.0 -0.2 0.0 0.0 -0.1 0.0 -0.2 

14 50028400 -0.7 -0.6 -0.5 -0.5 -0.5 -0.4 -0.6 -0.3 -0.3 -0.4 -0.3 -0.4 

16 50031200 -0.4 -0.3 -0.5 -0.5 -0.2 -0.7 -1.0 -0.1 0.2 -0.1 0.2 -0.1 

19 50034000 -0.3 -0.3 -0.3 -0.1 0.0 -0.5 -3.4 0.2 0.0 0.1 0.2 0.1 

20 50035000 -0.4 -0.2 -0.2 -0.2 -0.1 -1.2 -2.7 0.1 0.2 0.1 -0.8 0.1 

21 50038100 -0.6 -0.5 -0.4 -0.4 -0.3 -1.8 -7.7 -0.4 -0.3 -0.3 -0.2 -0.5 

24 50039500 -0.4 -1.2 -0.4 -0.2 0.1 -0.2 -2.0 0.0 0.2 0.3 0.2 0.2 

27 50043197 -0.3 -1.2 -1.1 -1.0 -0.2 -6.2 -4.9 -0.6 0.0 0.0 -1.1 -0.8 

28 50043800 -0.3 -0.4 -0.6 -0.7 -0.5 -1.8 -1.7 -0.1 -0.2 0.1 0.3 -0.4 

29 50044810 -0.4 -0.3 -0.2 0.0 0.0 -3.1 -5.7 0.2 0.0 -0.1 0.2 0.1 

31 50046000 -0.7 -1.2 -0.7 -0.9 -0.9 -2.0 -1.2 -0.6 -1.0 -0.1 0.3 -0.4 

36 50049100 -0.4 -0.4 -0.3 -0.2 -0.4 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 -0.2 

38 50050900 -0.4 -0.4 -0.4 -0.4 -0.4 -0.1 -0.1 -0.2 -0.2 -0.1 -0.1 -0.7 

39 50051310 -0.1 -0.3 -0.9 -0.3 -0.3 0.0 -0.2 0.1 0.1 0.0 -0.2 -1.4 

40 50051800 -0.1 -0.3 -0.6 -0.2 -0.3 -0.3 0.0 0.0 0.1 0.0 0.0 -0.6 

41 50053025 -0.3 -0.4 -0.3 -0.3 -0.2 -0.1 0.0 -0.1 -0.1 0.1 0.0 -0.2 

42 50055000 -0.2 -0.3 -0.4 -0.2 -0.2 -0.4 -0.1 0.0 0.1 0.1 0.1 -0.2 

43 50055225 -0.4 -0.5 -0.3 -0.3 -0.2 -0.8 0.0 -0.1 -0.1 -0.2 0.0 -0.1 

44 50055380 -0.3 -0.5 -0.4 -0.7 -0.2 -1.5 -1.3 0.0 0.0 -0.4 0.0 0.0 

45 50055750 -0.2 -0.4 -0.5 -0.6 -0.9 -1.3 -1.5 0.1 -0.1 0.0 -0.1 0.0 

46 50056400 -0.2 -0.5 -0.1 -0.5 -0.7 -0.6 -1.6 0.0 0.0 0.1 0.0 -0.2 

47 50057000 -0.2 -0.3 -0.3 -0.4 -0.9 -2.0 -3.9 0.1 0.1 0.1 0.0 0.0 

48 50058350 -0.4 -0.5 -0.4 -0.4 -0.3 -0.2 -0.3 -0.3 -0.3 -0.2 -0.1 -0.3 
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Table 11  ̶  Continued 

Index  
USGS 

Streamgage 

Kling-Gupta Efficiency, KGE 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

50 50059210 -0.3 -0.3 -0.3 -0.2 -0.1 -1.4 -1.0 -0.5 -0.1 -0.1 0.0 -1.2 

51 50061800 -0.3 -0.3 -0.2 -0.1 0.1 -0.4 -1.2 0.1 -0.3 0.0 0.2 0.1 

52 50063800 -0.5 -0.5 -0.4 -0.5 -0.4 -0.5 -0.1 -0.3 -0.1 -0.1 -0.1 -0.3 

53 50064200 -0.5 -0.5 -0.4 -0.4 -0.3 -0.2 -0.1 -0.2 0.0 -0.1 0.0 -0.3 

54 50065500 -0.5 -0.6 -0.5 -0.6 -0.3 -0.2 -0.2 -0.3 -0.2 -0.2 -0.1 -0.3 

55 50067000 -0.5 -0.5 -0.4 -0.4 -0.3 -0.3 -0.7 -0.2 -0.2 -0.2 0.0 -0.2 

57 50071000 -0.5 -0.5 -0.4 -0.3 -0.3 -0.1 -0.9 -0.2 -0.2 0.0 0.0 -0.2 

58 50075000 -0.5 -0.6 -0.5 -0.5 -0.3 -0.4 -0.3 -0.2 -0.2 -0.2 -0.1 -0.2 

60 50081000 -0.3 -0.3 -1.1 -0.3 -0.2 0.0 -0.5 0.1 -0.3 -0.2 0.0 -0.5 

61 50083500 -0.2 -0.5 -1.5 -0.3 -0.4 0.0 0.0 -0.1 -0.1 0.1 0.0 -1.1 

62 50085100 -0.3 -0.4 -1.6 -0.3 -2.2 -0.2 0.0 -0.1 -0.2 0.0 0.0 -1.0 

63 50090500 -0.3 -0.3 -0.5 -0.2 -0.2 -0.1 0.0 -0.2 0.0 0.0 -0.1 -0.3 

64 50092000 -0.2 -0.3 -2.5 -0.5 -0.2 -0.2 -0.1 -0.2 -0.4 0.1 0.0 -1.2 

65 50093000 -0.3 -0.3 -0.4 -0.3 -0.3 -0.2 -0.1 -0.2 0.0 -1.6 -0.1 -0.3 

72 50106100 -1.4 -2.5 -4.5 -3.2 -4.6 -9.7 -12.9 -3.2 -0.7 0.0 -0.4 -1.3 

74 50110650 -0.2 -0.3 -0.3 -0.3 -0.3 -1.7 -0.8 -0.1 -0.1 -0.2 -0.4 -0.3 

75 50110900 -0.2 -0.7 -1.2 -0.4 -0.5 -3.5 -2.9 -1.4 -0.8 -0.1 0.0 -1.3 

79 50112500 -0.2 -0.2 -0.4 -0.1 -0.2 -0.6 -0.1 0.1 -0.2 -0.4 -0.1 -0.1 

80 50113800 -0.2 -0.2 -0.3 -0.1 -0.1 -0.1 -0.6 0.1 -0.2 -0.3 -0.1 -0.3 

83 50114900 0.0 0.2 -0.6 0.0 -0.2 -1.1 -3.5 -0.3 0.0 -0.3 -0.3 -1.0 

84 50115240 -0.3 -0.4 -0.4 -0.2 -0.2 -1.6 -1.0 -0.1 -0.2 -0.2 -0.1 -0.2 

85 50124200 -0.2 -0.4 -0.8 -0.2 -0.3 -3.5 -3.2 -0.3 -0.1 0.0 -0.1 -0.2 

88 50136400 -0.5 -0.2 -0.4 -0.1 -0.3 -2.7 -4.6 0.0 -0.1 -0.1 -0.4 -0.3 

89 50138000 -0.2 -0.1 -0.4 -0.2 -0.2 -0.2 -1.6 0.4 0.1 -0.9 -0.2 -0.7 

90 50144000 -0.4 0.1 -0.3 -0.2 -0.2 -0.5 -1.1 0.0 -0.2 -0.1 -0.2 -0.6 

92 50147800 -0.2 -0.2 -0.3 -0.3 -0.5 -0.3 -0.2 -0.6 -0.1 -0.3 -0.1 -0.2 

93 50148890 -0.1 -0.3 -1.8 -0.2 -0.3 -0.3 -0.5 0.2 0.0 -0.1 0.0 -0.5 
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Figure 24: Overall KGE values at 54 basins across main island of Puerto Rico, numbered by Study Index. 
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Table 12: Monthly average Pearson product-moment correlation coefficient, r 

Index  
USGS 

Streamgage 

Pearson Product-Moment Correlation Coefficient, r 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

5 50014800 0.1 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.7 0.3 0.4 0.2 

9 50025155 0.0 0.2 0.3 0.2 0.3 0.4 0.4 0.5 0.3 0.3 0.4 0.3 

10 50026025 0.0 0.3 0.3 0.4 0.3 0.3 0.3 0.5 0.4 0.2 0.4 0.3 

12 50027000 0.1 0.2 0.4 0.3 0.3 0.3 0.4 0.6 0.4 0.3 0.4 0.3 

13 50028000 0.3 0.2 0.3 0.3 0.3 0.3 0.2 0.3 0.4 0.3 0.4 0.2 

14 50028400 -0.1 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.2 0.3 0.1 

16 50031200 0.1 0.1 0.2 0.4 0.3 0.3 0.2 0.5 0.6 0.4 0.5 0.4 

19 50034000 0.0 0.0 0.1 0.4 0.5 0.2 0.5 0.5 0.4 0.4 0.6 0.4 

20 50035000 0.0 0.2 0.4 0.4 0.3 0.4 0.4 0.6 0.5 0.4 0.4 0.4 

21 50038100 0.0 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.3 0.4 0.4 

24 50039500 0.0 0.3 0.1 0.4 0.5 0.5 0.3 0.4 0.6 0.5 0.6 0.6 

27 50043197 0.1 0.0 0.1 0.2 0.3 0.3 0.6 0.6 0.5 0.3 0.4 0.2 

28 50043800 0.0 0.1 0.2 0.2 0.2 0.3 0.6 0.5 0.4 0.4 0.6 0.4 

29 50044810 0.0 0.1 0.2 0.4 0.2 0.5 0.3 0.4 0.4 0.3 0.5 0.2 

31 50046000 -0.1 0.0 0.1 0.4 0.3 0.3 0.2 0.4 0.3 0.4 0.7 0.3 

36 50049100 0.2 0.1 0.2 0.4 0.1 0.3 0.2 0.3 0.2 0.2 0.4 0.4 

38 50050900 0.1 0.2 0.1 0.2 0.1 0.3 0.5 0.4 0.4 0.4 0.4 0.3 

39 50051310 0.3 0.1 0.2 0.3 0.2 0.4 0.5 0.7 0.5 0.5 0.5 0.3 

40 50051800 0.3 0.0 0.2 0.2 0.2 0.4 0.6 0.5 0.5 0.4 0.5 0.4 

41 50053025 0.2 0.1 0.2 0.1 0.3 0.4 0.5 0.5 0.4 0.4 0.4 0.3 

42 50055000 0.2 0.0 0.1 0.2 0.3 0.5 0.5 0.6 0.5 0.4 0.5 0.4 

43 50055225 0.1 0.0 0.1 0.1 0.2 0.3 0.5 0.4 0.4 0.1 0.4 0.3 

44 50055380 0.1 -0.2 0.0 0.1 0.1 0.2 0.4 0.3 0.3 0.2 0.4 0.3 

45 50055750 0.2 0.0 0.2 0.3 0.4 0.3 0.4 0.4 0.4 0.4 0.3 0.4 

46 50056400 0.2 0.1 0.2 0.1 0.3 0.2 0.4 0.5 0.3 0.5 0.5 0.3 

47 50057000 0.1 0.0 0.2 0.3 0.3 0.3 0.4 0.5 0.5 0.5 0.6 0.4 

48 50058350 0.2 0.0 0.0 0.2 0.3 0.4 0.5 0.3 0.3 0.3 0.4 0.4 
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Table 12  ̶  Continued 

Index  
USGS 

Streamgage 

Pearson Product-Moment Correlation Coefficient, r 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

50 50059210 0.2 0.1 0.2 0.2 0.3 0.4 0.3 0.4 0.4 0.2 0.4 0.3 

51 50061800 0.1 0.1 0.3 0.3 0.4 0.1 0.3 0.5 0.5 0.5 0.4 0.5 

52 50063800 0.1 0.0 0.2 0.1 0.3 0.4 0.4 0.4 0.5 0.4 0.4 0.3 

53 50064200 0.1 0.0 0.2 0.1 0.3 0.3 0.5 0.4 0.5 0.4 0.5 0.3 

54 50065500 0.0 -0.1 0.2 0.1 0.2 0.4 0.3 0.3 0.3 0.3 0.4 0.3 

55 50067000 0.0 0.0 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.3 

57 50071000 0.0 0.0 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.3 

58 50075000 0.1 0.0 0.1 0.3 0.4 0.2 0.3 0.4 0.4 0.3 0.4 0.5 

60 50081000 0.1 0.1 0.1 0.3 0.3 0.3 0.4 0.6 0.4 0.3 0.5 0.2 

61 50083500 0.2 0.1 0.2 0.2 0.2 0.4 0.5 0.5 0.4 0.6 0.5 0.4 

62 50085100 0.2 0.1 0.2 0.3 0.1 0.4 0.5 0.6 0.5 0.6 0.6 0.5 

63 50090500 0.3 0.2 0.1 0.2 0.2 0.3 0.5 0.4 0.5 0.5 0.4 0.3 

64 50092000 0.3 0.1 0.1 0.2 0.3 0.1 0.5 0.5 0.5 0.5 0.4 0.5 

65 50093000 0.3 0.1 0.1 0.2 0.2 0.3 0.4 0.4 0.4 0.3 0.3 0.3 

72 50106100 0.3 0.2 0.0 0.2 0.3 0.4 0.5 0.4 0.3 0.4 0.6 0.2 

74 50110650 0.2 0.1 0.1 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.5 0.2 

75 50110900 0.4 0.1 0.0 0.3 0.3 0.3 0.2 0.2 0.3 0.3 0.5 0.1 

79 50112500 0.2 0.2 0.1 0.4 0.3 0.3 0.4 0.5 0.3 0.3 0.4 0.3 

80 50113800 0.1 0.4 0.1 0.4 0.5 0.4 0.1 0.5 0.3 0.3 0.4 0.1 

83 50114900 0.3 0.5 0.1 0.4 0.4 0.3 0.3 0.4 0.4 0.3 0.5 0.1 

84 50115240 0.0 0.0 0.0 0.1 0.1 0.2 0.0 0.4 0.2 0.1 0.3 0.0 

85 50124200 0.3 0.0 0.2 0.4 0.3 0.4 0.3 0.4 0.2 0.3 0.4 0.2 

88 50136400 0.2 0.2 -0.1 0.4 0.1 0.2 0.5 0.3 0.4 0.4 0.3 0.1 

89 50138000 0.1 0.2 -0.1 0.3 0.2 0.5 0.5 0.6 0.5 0.6 0.4 0.2 

90 50144000 0.1 0.4 0.1 0.2 0.2 0.1 0.2 0.4 0.3 0.3 0.3 0.2 

92 50147800 0.1 0.4 0.1 0.3 0.0 0.3 0.2 0.3 0.3 0.3 0.3 0.2 

93 50148890 0.2 0.1 0.3 0.3 0.2 0.3 0.2 0.6 0.5 0.4 0.4 0.2 
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Figure 25: Overall r values at 54 basins across main island of Puerto Rico, numbered by Study Index. 
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Table 13: Monthly average ratio of mean simulated and mean observed flows, β 

Index  
USGS 

Streamgage 

Ratio of Mean Simulated and Mean Observed Flows, β 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

5 50014800 0.4 0.4 0.5 0.3 0.2 0.4 0.5 0.4 0.3 0.3 0.4 0.3 

9 50025155 0.4 0.4 0.5 0.5 0.3 0.7 0.8 0.3 0.2 0.3 0.3 0.6 

10 50026025 0.6 0.5 0.8 0.7 0.5 1.0 1.1 0.6 0.4 0.4 0.3 0.6 

12 50027000 0.7 0.6 0.6 0.7 0.6 1.1 1.5 0.9 0.5 0.5 0.4 0.6 

13 50028000 0.4 0.4 0.5 0.3 0.3 0.5 0.6 0.4 0.3 0.3 0.3 0.3 

14 50028400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

16 50031200 1.1 1.1 1.3 1.5 1.1 2.3 2.6 1.6 0.6 0.6 0.5 1.1 

19 50034000 0.6 0.7 0.9 0.8 0.6 1.3 1.9 1.0 0.8 0.4 0.5 0.9 

20 50035000 0.8 0.8 0.9 1.0 0.9 2.3 2.3 1.4 1.0 0.6 0.6 0.9 

21 50038100 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.0 0.1 

24 50039500 0.7 0.9 1.1 1.1 1.2 1.8 2.5 1.4 0.8 0.7 0.6 0.6 

27 50043197 0.7 2.4 2.0 2.1 1.4 7.1 5.0 1.6 0.8 0.5 2.0 2.2 

28 50043800 0.8 1.3 1.8 1.8 1.4 3.4 3.3 1.0 1.2 0.7 0.6 1.3 

29 50044810 0.5 0.5 0.5 0.6 0.6 1.1 1.2 0.9 0.6 0.5 0.4 0.6 

31 50046000 1.4 2.4 1.9 2.2 2.2 3.6 2.3 2.0 2.3 1.3 0.6 1.7 

36 50049100 0.3 0.4 0.5 0.4 0.2 0.7 0.6 0.4 0.4 0.5 0.3 0.3 

38 50050900 0.3 0.3 0.3 0.2 0.3 0.5 0.4 0.2 0.2 0.2 0.2 0.3 

39 50051310 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.3 0.3 0.3 0.2 0.3 

40 50051800 0.4 0.4 0.5 0.5 0.6 1.0 0.7 0.4 0.4 0.4 0.3 0.4 

41 50053025 0.3 0.4 0.4 0.3 0.3 0.6 0.6 0.3 0.3 0.4 0.2 0.4 

42 50055000 0.3 0.4 0.5 0.5 0.5 1.3 0.8 0.4 0.4 0.4 0.3 0.5 

43 50055225 0.5 0.5 0.8 0.6 0.5 1.7 1.2 0.6 0.4 0.7 0.4 0.7 

44 50055380 0.7 0.9 0.8 0.9 0.6 0.9 1.2 0.7 0.6 1.2 0.4 0.7 

45 50055750 0.7 0.9 1.4 1.2 1.6 2.4 2.3 0.9 0.9 0.5 0.3 0.6 

46 50056400 0.3 0.5 0.7 0.8 1.2 1.4 2.6 0.4 0.7 0.3 0.2 0.4 

47 50057000 0.7 0.8 1.2 0.9 1.3 3.2 4.8 0.6 0.6 0.4 0.2 0.5 

48 50058350 0.4 0.3 0.4 0.2 0.3 0.7 0.7 0.3 0.2 0.3 0.2 0.3 
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Table 13  ̶  Continued 

Index  
USGS 

Streamgage 

Ratio of Mean Simulated and Mean Observed Flows, β 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

50 50059210 0.8 1.1 1.1 0.9 1.0 2.7 2.2 1.6 0.6 0.5 0.6 0.8 

51 50061800 0.5 0.5 0.5 0.6 0.7 1.0 1.6 1.0 1.0 1.3 0.7 0.6 

52 50063800 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.2 0.2 0.2 0.1 0.1 

53 50064200 0.2 0.2 0.4 0.3 0.3 0.7 0.6 0.2 0.3 0.3 0.2 0.2 

54 50065500 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.1 

55 50067000 0.6 0.6 0.5 0.4 0.4 0.9 1.0 0.4 0.3 0.3 0.2 0.4 

57 50071000 0.3 0.4 0.5 0.5 0.3 0.7 1.3 0.4 0.3 0.4 0.3 0.3 

58 50075000 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 

60 50081000 0.2 0.2 0.3 0.2 0.3 0.4 0.7 0.4 0.4 0.4 0.3 0.2 

61 50083500 0.2 0.2 0.3 0.2 0.3 0.5 0.4 0.2 0.4 0.3 0.2 0.2 

62 50085100 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.2 0.3 0.1 0.1 0.1 

63 50090500 0.2 0.2 0.3 0.3 0.3 0.4 0.3 0.2 0.4 0.3 0.2 0.3 

64 50092000 0.3 0.4 0.4 0.2 0.4 0.5 0.5 0.2 0.4 0.3 0.2 0.5 

65 50093000 0.2 0.3 0.4 0.3 0.3 0.4 0.5 0.2 0.4 0.3 0.2 0.2 

72 50106100 2.9 4.3 6.1 4.8 6.2 11.4 13.5 5.0 1.9 0.9 1.7 2.7 

74 50110650 0.4 0.4 0.5 0.4 0.3 0.8 0.7 0.4 0.4 0.3 0.3 0.5 

75 50110900 1.6 2.3 2.6 1.1 1.3 4.6 4.2 2.3 1.6 1.0 0.8 1.9 

79 50112500 0.7 0.9 1.1 0.7 0.5 0.7 1.0 0.5 0.3 0.3 0.3 0.5 

80 50113800 0.5 0.6 0.9 0.6 0.3 0.5 1.0 0.4 0.2 0.2 0.2 0.4 

83 50114900 0.5 0.7 1.0 0.9 0.6 1.3 1.3 0.7 0.5 0.3 0.3 0.5 

84 50115240 0.8 1.1 1.3 0.7 0.7 1.5 1.9 1.0 0.5 0.4 0.4 0.7 

85 50124200 1.2 1.5 2.1 1.3 1.2 2.5 3.6 1.5 0.7 0.7 0.7 1.1 

88 50136400 0.6 0.7 0.6 0.4 0.6 0.6 0.9 0.5 0.2 0.3 0.5 0.4 

89 50138000 1.0 1.2 1.4 0.7 0.8 1.7 2.8 0.9 0.5 0.3 0.5 0.7 

90 50144000 0.5 0.7 1.0 0.5 0.4 0.6 0.7 0.4 0.3 0.3 0.3 0.4 

92 50147800 0.5 0.6 0.8 0.3 0.2 0.1 0.3 0.3 0.3 0.2 0.3 0.6 

93 50148890 0.9 1.0 2.9 0.6 0.3 0.3 0.8 0.3 0.3 0.3 0.4 0.6 
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Figure 26: Overall β values at 54 basins across main island of Puerto Rico, numbered by Study Index. 
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Table 14: Monthly average Variability Ratio, γ 

Index  
USGS 

Streamgage 

Variability Ratio, γ 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

5 50014800 1.0 0.6 0.8 0.4 0.6 1.1 2.1 1.3 0.9 1.5 1.8 1.3 

9 50025155 0.4 0.3 0.2 0.4 0.5 1.2 1.8 0.7 0.8 1.1 1.3 1.0 

10 50026025 0.5 0.3 0.4 0.5 0.3 1.7 2.1 0.6 0.7 0.8 1.0 1.7 

12 50027000 0.4 0.2 0.2 0.5 0.3 2.4 3.1 0.7 0.6 0.8 0.9 1.6 

13 50028000 0.3 0.2 0.1 0.2 0.3 0.9 1.1 0.7 0.9 1.0 1.0 1.0 

14 50028400 0.7 0.6 0.3 0.3 0.4 1.1 1.3 0.8 0.7 0.6 0.9 0.8 

16 50031200 0.2 0.2 0.1 0.4 0.3 0.7 0.4 0.6 0.5 0.9 0.7 1.2 

19 50034000 0.2 0.2 0.3 0.4 0.4 2.0 5.1 0.6 1.0 0.8 1.2 0.7 

20 50035000 0.2 0.2 0.2 0.4 0.3 2.2 3.8 0.5 0.7 0.7 2.0 0.9 

21 50038100 0.4 0.4 0.4 0.4 0.5 3.2 9.5 1.3 1.1 1.0 1.0 1.6 

24 50039500 0.2 1.7 0.2 0.3 0.6 0.7 2.4 0.8 1.2 1.1 1.5 0.6 

27 50043197 0.2 0.2 0.7 0.5 0.6 3.1 3.0 0.7 0.6 0.6 0.6 0.3 

28 50043800 0.2 0.1 0.3 0.5 0.3 1.1 1.2 0.3 0.6 0.7 0.6 1.2 

29 50044810 0.1 0.2 0.3 0.5 0.5 4.0 6.6 0.6 0.5 0.5 1.1 1.0 

31 50046000 0.2 0.2 0.5 0.6 0.4 1.1 1.6 0.5 0.6 0.7 0.7 0.5 

36 50049100 0.1 0.1 0.3 0.1 0.2 0.5 0.5 0.5 0.7 0.4 0.6 0.3 

38 50050900 0.2 0.2 0.6 0.1 0.3 0.7 0.4 0.4 0.5 0.6 0.6 0.9 

39 50051310 0.5 0.5 1.6 0.3 0.6 1.0 1.2 0.6 1.0 1.3 1.4 2.3 

40 50051800 0.5 0.3 1.1 0.3 0.4 1.2 1.0 0.6 0.9 1.0 1.2 1.5 

41 50053025 0.2 0.2 0.6 0.3 0.4 0.8 0.6 0.4 0.6 1.0 0.8 0.8 

42 50055000 0.4 0.4 0.6 0.4 0.4 1.1 0.9 0.4 0.8 0.8 0.8 1.0 

43 50055225 0.1 0.1 0.2 0.3 0.2 0.9 0.7 0.3 0.4 0.4 0.6 0.5 

44 50055380 0.1 0.2 0.1 1.6 0.3 2.5 2.5 0.4 0.4 0.4 0.6 0.4 

45 50055750 0.3 0.1 0.1 0.2 0.4 1.1 1.1 0.5 0.8 1.1 0.6 0.4 

46 50056400 0.5 0.8 0.4 0.2 0.3 0.7 0.8 0.4 0.6 0.8 0.7 0.8 

47 50057000 0.2 0.2 0.1 0.2 0.3 0.9 0.7 0.6 0.6 0.6 1.0 0.6 

48 50058350 0.1 0.1 0.2 0.1 0.3 0.9 1.1 0.3 0.4 0.4 0.6 0.6 



www.manaraa.com

86  

 

Table 14  ̶  Continued 

Index  
USGS 

Streamgage 

Variability Ratio, γ 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

50 50059210 0.1 0.4 0.2 0.2 0.3 1.7 0.9 0.5 0.4 0.4 0.6 1.8 

51 50061800 0.2 0.3 0.3 0.4 0.5 1.3 1.9 0.9 1.3 0.8 0.8 0.4 

52 50063800 0.2 0.2 0.3 0.2 0.3 1.0 0.5 0.3 0.6 0.7 0.7 0.4 

53 50064200 0.1 0.2 0.2 0.1 0.2 0.6 0.4 0.4 0.5 0.6 0.7 0.4 

54 50065500 0.3 0.2 0.2 0.1 0.3 0.9 0.6 0.4 0.5 0.5 0.7 0.5 

55 50067000 0.2 0.1 0.1 0.1 0.2 0.6 0.5 0.3 0.3 0.4 0.7 0.4 

57 50071000 0.1 0.1 0.1 0.2 0.3 0.5 0.6 0.3 0.4 0.6 0.8 0.4 

58 50075000 0.3 0.1 0.3 0.1 0.3 0.6 0.5 0.4 0.5 0.9 0.8 0.6 

60 50081000 0.5 0.5 1.7 0.3 0.8 1.1 2.0 0.9 1.7 1.2 1.1 0.9 

61 50083500 0.6 0.8 2.0 0.4 1.0 1.1 0.8 0.4 1.3 1.0 1.3 2.0 

62 50085100 0.7 0.8 2.2 0.3 3.1 1.1 1.0 0.5 1.5 1.1 1.2 2.1 

63 50090500 0.5 0.4 0.8 0.4 0.6 1.2 0.6 0.5 1.0 0.9 1.2 1.1 

64 50092000 0.4 0.3 2.7 0.1 0.5 0.8 0.7 0.3 1.3 0.9 0.8 2.2 

65 50093000 0.4 0.3 0.8 0.4 0.4 1.0 0.7 0.5 1.2 2.6 1.1 0.6 

72 50106100 0.5 0.3 0.8 0.3 0.6 2.3 4.9 0.5 0.3 0.9 1.4 0.7 

74 50110650 0.6 0.3 0.4 0.2 0.3 2.7 1.8 0.5 0.6 0.6 1.7 1.1 

75 50110900 0.3 0.7 0.6 0.1 0.3 2.0 1.4 0.5 0.4 0.5 0.7 1.3 

79 50112500 0.2 0.2 0.1 0.3 0.3 1.1 1.0 0.7 0.9 1.5 1.4 0.7 

80 50113800 0.3 0.1 0.4 0.3 0.4 0.3 1.1 0.7 0.6 1.3 1.3 1.1 

83 50114900 0.7 0.5 1.2 0.8 0.9 2.2 4.8 1.0 0.6 1.2 1.5 2.2 

84 50115240 0.1 0.1 0.3 0.4 0.3 1.7 1.4 0.7 0.7 0.8 1.0 0.7 

85 50124200 0.2 0.3 0.3 0.3 0.2 3.7 2.6 0.5 0.8 1.0 1.2 0.6 

88 50136400 1.1 0.3 0.4 0.4 0.7 3.4 5.7 0.9 0.7 0.6 1.9 0.9 

89 50138000 0.4 0.4 0.6 0.2 0.6 0.8 1.7 0.9 0.9 2.1 1.8 2.1 

90 50144000 1.2 0.5 0.6 0.3 0.3 1.2 1.9 0.6 0.5 0.7 1.3 1.9 

92 50147800 0.3 0.1 0.1 0.2 0.3 0.3 0.5 1.4 0.5 0.3 0.5 0.3 

93 50148890 0.3 0.5 0.1 0.2 0.3 1.0 1.3 0.8 0.9 0.8 0.8 1.0 
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Figure 27: Overall γ values at 54 basins across main island of Puerto Rico, numbered by Study Index 
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6.3 Sources of Error 

Model performance according to NSE and KGE measures shows poor accuracy. 

Certainly, multiple sources of error exist for this modelling approach, including persistent 

underestimation of rainfall and low spatiotemporal resolution of rainfall estimates. Although it is 

difficult to quantify their individual effects, it is clear that these limitations negatively influence 

the model’s ability to accurately predict streamflow.   

6.3.1 Underestimation of Rainfall Accumulation 

As shown in Table 13 and Figure 26, the ratio of mean simulated and mean observed 

flows, β, has monthly average values between zero and one for every modelled watershed, 

depending on the season. This indicates that simulations are biased toward low estimation of 

streamflow. Underestimation of streamflow likely indicates underestimation of rainfall. 

Persistent underestimation of rainfall can cause antecedent conditions that are two dry, delaying 

the generation of runoff and decreasing peaks. Also, total rainfall water volumes estimated by 

IMERG Late Run may be less than the ground truth on an event-scale, causing less water to enter 

modelled watersheds as rainfall flux. 

Antecedent conditions play a large role in the performance of hydrologic models at the 

plot, catchment, and watershed scales (Zehe & Blöschl, 2004). Regarding the challenges of 

hydrologic prediction, the National Research Council’s (NRC’s) Committee on Hydrologic 

Science (COHS) noted “in watershed rainfall-runoff transformation [...] initial and boundary 

conditions are the critical issues” (The National Research Council, 2003). Soil moisture and 

streamflow effectively represent the memory of a watershed between storm events. As such, 

persistent inaccurate estimation of rainfall within a hydrologic model will set too wet or too dry 
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soil moisture conditions, or too high or too low streamflow rates before an upcoming storm 

event. Whether this storm event is predicted to cause a flood or not can be completely changed 

given different initial conditions within the model. Therefore, inaccurate estimation of current 

rainfall can decrease the accuracy of prediction for a subsequent events. And, there is certainly 

evidence of inaccurate estimation of rainfall on Puerto Rico by IMERG Late Run at both short 

and long temporal scales.  

As shown in Table 6, IMERG Late Run estimates of rainfall underestimate total rainfall 

accumulations for the small watersheds in Puerto Rico on an annual scale. Similarly, Figure 28 

shows that over a 27 month period, total rainfall accumulations as estimated by IMERG Late 

Run underestimates the quantity measured by USGS 182647066201700 Sabana Hoyos 2 with a 

4.89% difference. This underestimation is small, as USGS observed a total of 4212 mm of 

rainfall, while IMERG Late Run estimated a total of 4011 mm. However, the total accumulations 

during short time periods can vary greatly.  

During January of 2018, USGS observed a total of 148 mm of rainfall at Sabana Hoyos 2 

Well at Vega Alta, while IMERG Late Run estimated only 5 mm total, a 186.93% difference. 

This illustrates the capacity of IMERG to greatly underestimate rainfall, as highlighted in yellow 

in Figure 28. During June of 2018, USGS observed 44 mm of rainfall at Sabana Hoyos 2 Well at 

Vega Alta, while IMERG Late Run estimated 487 mm total, a 166.86% difference. This 

illustrates the capacity of IMERG to also greatly overestimate rainfall, as highlighted in orange 

in Figure 28. As a result, the initial soil conditions for model analysis of nearby watersheds 

starting in February and July of 2018 would likely be too dry and too wet, respectively, and 

streamflow would likely be misrepresented. Although watersheds in Puerto Rico consistently 
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demonstrate very quick hydrologic responses, they will nonetheless be influenced by the long-

term behavior of soil moisture and streamflow (Smith et al., 2005).   

  

 The persistent bias toward underestimation is illustrated in Figure 29, comparing 

simulated and measured streamflow at USGS 50039500 Río Cibuco at Vega Baja for the month 

of December, 2014. The NSE and KGE values for this watershed are both 0.65 for this month. 

Notably, the least accurate component of KGE is the ratio of mean simulated and mean observed 

flows, β, with a value of 0.74 for this month. While the timing of simulated and observed 

streamflow peaks are highly correlated and display similar variability, a clear bias toward 

Figure 28: Total rainfall accumulation as measured by USGS 182647066201700 and estimated 

by IMERG Late Run from October 1, 2016 to December 31, 2018. Data from January of 2018 is 

highlighted in yellow to show a period of underestimation by IMERG Late Run, while data from 

June 2018 is highlighted in orange to show a period of overestimation by IMERG Late Run. 
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streamflow underestimation is shown. Total rainfall estimates for this month fall below average 

estimates provided by Parameter-elevation Regressions on Independent Slopes Model (PRISM) 

precipitation normals for the month of December, suggesting that precipitation was likely 

underestimated (Daly, Helmer, & Quinones, 2003). 

 

In addition, Figure 30 compares simulated and measured streamflow at USGS 50138000 

Río Guanajibo near Hormigueros for the month of February, 2017. The NSE and KGE values for 

this watershed are 0.06 and 0.41, respectively. No rainfall was estimated by IMERG Late Run 

Figure 29: Simulated and measured streamflow at USGS 50039500 Río Cibuco at Vega Baja 

for the month of December, 2014. Mean areal rainfall values for the watershed as estimated 

by IMERG Late Run is shown above.  
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during this month so only baseflow is seen in the hydrograph. Notably, the least accurate 

component of KGE is the correlation coefficient, r, with a value of 0.50 for this month. Some 

storm events are simply not detected so the resulting runoff is not simulated, greatly reducing 

model performance. This is clearly seen in the first week of February 2017.  

 

 Together, Figure 29 and Figure 30 illustrate the effects of inaccurate precipitation 

estimation on streamflow prediction. Underestimation of rainfall reduces the magnitude of 

predicted peak flows, while failing to detect rainfall allows the model to “miss” streamflow 

Figure 30: Simulated and measured streamflow at USGS 50138000 Río Guanajibo near 

Hormigueros for the month of February, 2017. Mean areal rainfall values for the watershed as 

estimated by IMERG Late Run is shown above. 
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peaks. While the measured flows shown in Figure 30 would not generate flooding, the 

disconnect between IMERG Late Run estimates and observed streamflow is very clear.  

 To ensure that the overall water balance is accurate and evapotranspiration estimates are 

not biased, I computed the monthly average storage of water within each modelled watershed:  

∆𝑆 = 𝑃 − 𝑅 − 𝐸𝑇 

where ΔS is the monthly change in depth of storage (m), P is the monthly rainfall depth 

estimated from basin-average climatic rainfall normals, R is the average monthly depth of runoff 

estimated from USGS streamgage measurements, and ET is the average monthly 

evapotranspiration rates from basin-average MODIS estimates. The results of these calculations 

are shown in Table 15. They demonstrate that evapotranspiration is likely not biased, as the 

change in storage is not highly negative or highly positive in both wet and dry seasons. If 

evapotranspiration rates were overestimated, a universal storage deficit would be expected. If 

evapotranspiration rates were underestimated, a universal storage surplus would be expected. 

Because neither trend is observed, evapotranspiration estimates are likely not causing the poor 

model performance observed.  
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Table 15: Monthly average change in water storage 

Index  
USGS 

Streamgage 

Change in Water Storage (m) 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

5 50014800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

9 50025155 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1 -0.2 -0.4 -0.1 -0.3 -0.1 

10 50026025 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 

12 50027000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 

13 50028000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.0 

14 50028400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 

16 50031200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

19 50034000 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 -0.1 -0.2 -0.1 -0.2 -0.1 

20 50035000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

21 50038100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

24 50039500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

27 50043197 -0.1 -0.1 -0.1 -0.2 -0.2 -0.1 -0.1 -0.2 -0.4 -0.2 -0.4 -0.1 

28 50043800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

29 50044810 -0.1 -0.1 -0.1 -0.2 -0.2 -0.1 -0.1 -0.2 -0.4 -0.2 -0.4 -0.1 

31 50046000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

36 50049100 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 -0.1 -0.2 -0.1 -0.2 -0.1 

38 50050900 -0.1 -0.1 -0.1 -0.2 -0.2 -0.1 -0.1 -0.2 -0.5 -0.3 -0.5 -0.2 

39 50051310 -0.1 0.0 -0.1 -0.1 -0.1 0.0 0.0 -0.1 -0.3 -0.1 -0.3 -0.1 

40 50051800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

41 50053025 -0.1 -0.1 -0.1 -0.2 -0.1 -0.1 -0.1 -0.2 -0.4 -0.2 -0.4 -0.1 

42 50055000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

43 50055225 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.2 0.0 

44 50055380 -0.2 -0.1 -0.1 -0.3 -0.2 -0.1 -0.1 -0.3 -0.5 -0.3 -0.6 -0.2 

45 50055750 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 

46 50056400 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.2 0.0 

47 50057000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

48 50058350 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.3 -0.2 -0.4 -0.1 
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Table 15  ̶  Continued 

Index  
USGS 

Streamgage 

Change in Water Storage (m) 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

50 50059210 -0.1 0.0 0.0 -0.1 -0.1 0.0 0.0 -0.1 -0.2 -0.1 -0.2 -0.1 

51 50061800 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.1 -0.3 -0.1 

52 50063800 -0.1 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.3 -0.2 -0.3 -0.1 

53 50064200 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.3 -0.2 -0.4 -0.1 

54 50065500 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.3 -0.2 -0.4 -0.1 

55 50067000 -0.2 -0.1 -0.1 -0.3 -0.3 -0.1 -0.1 -0.3 -0.5 -0.3 -0.7 -0.2 

57 50071000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 

58 50075000 -0.6 -0.4 -0.5 -0.8 -0.9 -0.5 -0.5 -1.0 -1.6 -1.0 -2.1 -0.8 

60 50081000 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.3 -0.2 -0.4 -0.1 

61 50083500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 

62 50085100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 

63 50090500 -0.1 -0.1 -0.1 -0.2 -0.2 -0.1 -0.1 -0.2 -0.4 -0.2 -0.5 -0.2 

64 50092000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.0 

65 50093000 -0.2 -0.1 -0.1 -0.2 -0.2 -0.1 -0.1 -0.3 -0.4 -0.3 -0.6 -0.2 

72 50106100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

74 50110650 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 

75 50110900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.0 

79 50112500 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 -0.1 -0.2 -0.1 -0.2 -0.1 

80 50113800 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 -0.1 -0.2 -0.1 -0.2 -0.1 

83 50114900 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.1 -0.3 -0.1 

84 50115240 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.2 -0.1 

85 50124200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 

88 50136400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 

89 50138000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

90 50144000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

92 50147800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

93 50148890 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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6.3.2 Coarse Spatiotemporal Resolution of Rainfall 

 The spatial and temporal resolution of IMERG Late Run estimates of rainfall is coarse, 

relative to weather radar. While IMERG Late Run provides rainfall estimates at ~11-km spatial 

resolution and 30-min temporal resolution, national weather radar networks usually provide 

rainfall estimates at 1-km spatial resolution and temporal resolutions of 5 or 10 minutes. In order 

to capture structures and extremes in rainfall that cannot be extrapolated form measurements at 

coarse resolution, rainfall should be estimated at high resolution, perhaps sub-kilometric scales 

(Ochoa-Rodriguez et al., 2015). Still, multiple studies have shown that coarse temporal 

resolution of rainfall inputs has a larger negative effect on hydrodynamic modelling results than 

spatial resolution (Krajewski, Lakshmi, Georgakakos, & Jain, 1991; Meselhe, Habib, Oche, & 

Gautam, 2009; Notaro, Fontanazza, Freni, & Puleo, 2013). 

 Perhaps an appropriate method to increase the utility of IMERG Late Run data for this 

application is to adopt existing rainfall downscaling techniques capable of reflecting the small-

scale statistical properties that are consistent with those of measured precipitation fields 

(D’Onofrio, von Hardenberg, Provenzale, Palazzi, & Calmanti, 2014; Rebora, Ferraris, von 

Hardenberg, & Provenzale, 2006). Such a strategy may help address errors caused by coarse 

spatial resolution. However, addressing limited temporal resolution of IMERG Late Run data 

may not be viable because rainfall does not exhibit great persistence.  

6.4 Comparison to Raingage Forcing 

As shown in Figure 8, the historical record of rainfall measurements provided by the 

USGS is limited. However, sufficient data is available to perform streamflow simulations forced 

by raingage data during the last half of 2018. Since large floods are of greatest concern, I have 
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focused on three of the five largest modelled watersheds during August, Puerto Rico’s wettest 

month. Figure 31, Figure 32, and Figure 33 show model results forced by both IMERG Late Run 

and USGS 5-min raingage measurements for USGS 50029000, USGS 50035000, and USGS 

50046000, respectively. These watersheds are located on three different major rivers and have 

many raingages nearby.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Simulated and measured streamflow at USGS 50029000 Río Grande de 

Arecibo at Central Cambalache for the month of August, 2018. Mean areal rainfall 

values for the watershed as estimated by IMERG Late Run is shown above. 
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Results show that using raingage forcing improves model performance greatly. This 

indicates that the Iowa Flood Center Top Layer model has skill for large watersheds in Puerto 

Rico. The included raingage data provides much finer temporal resolution than IMERG Late Run 

estimates. In addition, raingage measurements are likely closer to the “ground truth” and more 

accurate than IMERG Late Run estimates. Still, these results from the uncalibrated models show 

that peak flows are nonetheless underestimated consistently. This indicates that increased 

accuracy in model parameters is also necessary to sufficiently predict large flood events. Clearly, 

addressing limitations in IMERG Late Run precipitation estimates is only one part of improving 

complicated, interconnected model processes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Simulated and measured streamflow at USGS 50035000 Río Grande de 

Manatí at Ciales for the month of August, 2018. Mean areal rainfall values for the 

watershed as estimated by IMERG Late Run is shown above. 
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6.5 Conclusions 

Ultimately, the methods presented in this research need to be further developed in order 

to benefit vulnerable communities. Conceptually, continuous simulation of streamflow by 

watershed models driven exclusively by satellite remote sensing data is a cutting-edge approach 

to address the global disparity in flood prediction. Operationally, many sources of error integral 

to such an approach converge to produce inaccurate flood predictions across spatial and temporal 

scales. However, I can suggest a number of developments that would likely improve model 

performance.  

Figure 33: Simulated and measured streamflow at USGS 50046000 Río de la Plata at 

Highway 2 near Toa Alta for the month of August, 2018. Mean areal rainfall values for 

the watershed as estimated by IMERG Late Run is shown above. 
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Although many developing countries may be considered “data poor,” it is unlikely that 

any are wholly “data bankrupt.” Simply put, any and all available in-situ data can help refine 

modelling efforts. Perhaps satellite remote sensing data should not be used to provide all rainfall 

forcing, but instead be used to fill gaps in existing raingage and weather radar networks, even if 

they are sparse. In addition, satellite estimates of rainfall may be bias adjusted by on-the-ground 

observations. This bias adjustment can vary in space and time, such that regional and seasonal 

correction factors are applied. Bias adjustment can help limit the influence of persistent 

underestimation or overestimation of rainfall. In addition, rainfall downscaling may better reflect 

small scale spatial properties of storm events. And, more accurate estimation of physical model 

parameters can improve the accuracy of predictions.  

 Ultimately, truly sustainable solutions to flood-related problems must integrate the local 

knowledge of the communities that they serve. This research approached flood prediction in 

Puerto Rico as a top-down exercise, where decisions were made unilaterally to represent 

conditions from afar. No Puerto Rican scientists, engineers, or forecasters were consulted, nor 

were any local stakeholders involved. This research was motivated by one question: Can we 

predict floods from space? In seeking an answer, a wealth of human resources were ignored. 

 Still, the results of this research show that baseline requirements for flood prediction on 

the main island of Puerto Rico are likely above what can be provided by satellite remote sensing 

data alone. Perhaps further advancements in remote sensing technology and algorithms will 

address the limitations of the current version of IMERG Late Run. And, I hope that advanced 

modelling techniques like the WMO Flash Flood Guidance System will continue to be developed 

so that scientists and engineers can more effectively predict floods within the world’s most 

vulnerable communities. This is certainly a step forward.  
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